
Volunteer members of  
Japan LabVIEW Users Group

F r e e f o r h obb i e s

Enjoy Programming
with LabVIEW Community Edition

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

この書籍に添付されるプログラムはMITライセンスで提供されます。 
All programs attached to this book is provided under the MIT license.  
 
Copyright (c) 2020 Japan LabVIEW Users Group, Volunteer members. 
 
http://opensource.org/licenses/mit-license.php

Copyright (c) 2020 Japan LabVIEW Users Group, Volunteer members.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Foreword

Jeff Kodosky, the father of LabVIEW,  
gave us his thoughts on LabVIEW Community Edition and the following message for our readers.

We created the LabVIEW Community editions so engineers could use the software for free — to pursue
their hobbies and personal projects, experiment with programming ideas and create and share IP with their
peers. I am thrilled to see the Japan LabVIEW User Group create this e-book that contains everything a
budding hobbyist would need to start programming with LabVIEW. The quality of this work shows we have
a very passionate community of LabVIEW developers who want to share their love of LabVIEW with
everyone. I personally want to thank the Japan LabVIEW User Group for their enthusiasm, dedication, and
hard work. I look forward to seeing the many fantastic projects everyone will create with the LabVIEW
Community edition after reading and learning with this free e-book.

JEFF KODOSKY
Inventor of LabVIEW

Cofounder and Business and Technology Fellow, NI

�i

�i i

LabVIEW NXG Community Edition June 24, 2020

Introduction
What comes to your mind when you hear the word "programming"? Your computer and smartphone are

in fact, working thanks to programming. You can find programming everywhere. There is rarely any home
appliance (TV, fridge) that does not use programming. It is hard to come to the realization, but programming
has become a part of everyday life.

From 2020, programming has been included in the school curriculum in Japan (Figure 0-1). The word
"study" might put you on guard, but unlike other subjects, studying involves using a computer. Now that
sounds a bit better, doesn't it? When you are forced to study, learning stops being fun because it is something
you have to do. But there are many perks to being able to program.

・Automating various tasks
The tasks that you used to do manually can be automated by programming. For
example, if your homework is to measure and record the temperature every hour,
you can use programming to automatically measure and record repetitively at
specified intervals.
・More convenient life
Old TVs could only show TV programs. However, with the progress of technology,
especially in programming, TVs can now connect to the Internet. Various new
features have been added, including using the Internet on TV. Another example
is the cleaning robot (Figure 0-2). It remembers the cleaning course and gets
every corner of the house squeaky clean thanks to programming.
・Job opportunities
There are many companies out there that want people with programming skills.
Becoming a programmer (someone who can program) will open more career
doors for you in the future.
・Make your own games
All games, whether RPGs or fighting games, are made by programming. It is
common to buy and play the games you want, but once you master
programming, you can create and play your own titles.

�i i i

Figure 0-2 Cleaning robot

Figure 0-1 Studying???

Now that we have covered the perks, let us look at different kinds
programming out there. It is said that there are several thousands types of
programming in the world. They each have their own set of
programming rules. Just like English and Japanese, they can be used to
program the same content with different rules (Figure 0-3).

Because of this, programming rules are collectively called
"programming languages." There are vast number of programming
languages, ranging from ones that have been around for decades like
machine language and C, to the popular Python and LabVIEW. It is hard
to say which is better than which, but it is often the case that some
programming languages become obsolete while some become popular
because of the trends in the world. It is quite important which language
you choose to learn. The outcome of your studying is way more valuable
if you choose to learn a popular language rather than an obsolete one,
because there is more demand out there for programmers who can
program in the popular languages. The first milestone of studying
programming is choosing the programming language.

In this book, you will learn programming using LabVIEW. LabVIEW is
not just a programming language for learning purpose but also commonly
used in the real world. LabVIEW is used to develop new products in
companies and perform state-of-the-art researches in universities (Figure
0-4, Figure 0-5). In this book, the small details of programming (such as bit
arithmetic) are not covered. However, you will master how to "measure"
and "control" with LabVIEW. We hope that you will simply enjoy
programming and the science along this journey with us.

�i v

Figure 0-5 IoT (Internet of
Things)

Figure 0-4 Mars rover

Figure 0-3 Greetings

Contents
Foreword from Jeff Kodosky / Father of LabVIEW
Introduction
This book is written so that people who want to expand their hobbies with
programming and who want to start physical computing and prototyping using
Arduino can learn LabVIEW from scratch. We have prepared example
programs that will get you interested.We tried to write simple sentences that
even middle school students could enjoy.

Part 1 Getting Started with LabVIEW
Programming will help you sort out the problems at hand, try them out, and think further

Chapter 1 Programming with LabVIEW
Looking back on the history of computer usage and explaining the positioning of LabVIEW

　1.1 Computer and Computer Program ・・・1
　1.2 Text-Based Language and Graphical Language ・・・3
　1.3 Physical Computing and LabVIEW ・・・4
　1.4 The Best Use Cases of LabVIEW ・・・6
　<Article 1 LabVIEW Heads Towards NXG>

Chapter 2 Using LabVIEW Community Edition
Features of LabVIEW, structure of this document and installation of LabVIEW Community Edition

　2.1 Features of LabVIEW and LabVIEW NXG ・・・9
　2.2 Structure of this Document ・・・11
　2.3 Installing LabVIEW Community Edition ・・・12
　<Article 2 Install LabVIEW NXG Community Edition>

�v

Part 2 Getting Started with LabVIEW Programming
Learn the Basics of LabVIEW Programming

Chapter ３ First Exposure to Graphical Programming
LabVIEW-specific programming methods such as icons, wires, and data flows

　3.1 Investigating the LED Properties in LabVIEW ・・・22
　3.2 Observing the LabVIEW Program ・・・24
　3.3 Creating a Simple LabVIEW Program ・・・26
　3.4 Making the Program Run Repeatedly ・・・34
　<Article 3 Programming with LabVIEW NXG>

Chapter ４ Making Your Own Application
How to make a practical application that can record and playback

　4.1 LabVIEW Programming for Your Hobby ・・・43
　4.2 Operate the “SoundVIEW” Program ・・・45
　4.3 Record and Playback Example Program ・・・52
　4.4 Waveform Data and Array ・・・55
　4.5 For Loop, Shift Register and Array ・・・58
　4.6 Build Waveform Data and SubVI ・・・64
　4.7 Record and Playback Program ・・・68
　<Article ４ LabVIEW NXG Web affinity>

�V I

Part 3 Electronic Projects with LabVIEW and Arduino
Please prepare Arduino UNO, breadboard, tact switch, fan, LED, fixed resistance (100Ω), variable resistance
(10kΩ), 6 wires

Chapter ５ LabVIEW and Arduino
Start physical computing with Arduino

　5.1 Installation of Arduino IDE and Blink ・・・79
　5.2 Arduino Input and Output ・・・82
　5.3 Control your Arduino with LabVIEW ・・・83
　5.4 Make a Switch Counter ・・・86
　5.5 Make a Fan Controller ・・・90
　5.6 Change the Operation of the Switch ・・・95
　<Article ５ LabVIEW NXG and Hardware>

Chapter ６ Investigating LED Properties
Examine the LED properties

　6.1 Assembling the Experimental Circuit 
 for LED Voltage-Current Properties ・・・99
　6.2 Measuring LED Voltage and Current ・・・100
　6.3 The Program to Display  
 LED V-I Property Curve ・・・104
　6.4 Regression Analysis 
 of LED V-I Property Data ・・・105
　6.Appendix Additional Note on Variable Resistors  
 and the Experimental Circuit ・・・110
　<Article 6 Data Analysis with LabVIEW NXG>

�v i i

Chapter ７ Using the Latest Semiconductor Sensors
Sensors used in smartphones and automobiles are sold as modules that can be easily connected to Arduino,
so we will introduce an example of how to use them.

　7.1 Semiconductor Sensors Used in Smartphones
 and Automobiles ・・・115
　7.2 Sensor to Measure Heart Rate ・・・116
　7.3 Operate with Sample Program for Arduino ・・・117
　7.4 Get the Datasheet ・・・119
　7.5 Creating a LabVIEW Serial Receive Program ・・・121
　7.6 Create Heart Rate Measurement Program ・・・128
　<Article ７ What LabVIEW NXG Aims for>

List of Example VIs
Afterword

�V I I I

Part 1  
Getting Started with LabVIEW

Chapter 1  
Studying Programming
with LabVIEW
We will review computers and programming briefly and introduce key features of the LabVIEW graphical
programming and the world where LabVIEW is used.
[Keywords] Programming, Text-based language, graphical language, LabVIEW, Physical computing, Arduino,
Raspberry Pi, LINX, LabVIEW Community Edition

1.1 Computer and Computer Program

What is programming? A computer program is an instructions manual that
tells computers how to perform a task. Let’s say you were asked to “Take a
memo on what I say. Write that a tomato is $1, meat is $2, and books...will be two
books so $20.” This memo would look similar to this (Figure 1-1). You were able
to complete this task successfully.

�1

Figure 1-1 Shopping list

Let’s say we were to ask the PC to do the same. The result is that no memo has been taken (Figure 1-2).
Why did this happen? This is because PC cannot act the same way as humans when told to perform a certain
task. We humans can understand the instruction and break it down into smaller steps.

(1) To take a memo, prepare a pencil and a notepad
(2) I heard “Tomato is $1” so let’s write down “Tomato $1.”
(3) I heard “Meat is $2” so write down “Meat $2.”
(4) I heard “and books...” so let’s first write “Books”
(5) “will be two books so $20” should be written as “Books $20.”

Just like this. Instead, PC does not understand the action of
“taking the memo.” Even if it did understand memo taking, PC does
not know that it needs to prepare a pencil and a notepad. We need to
tell the steps very precisely to PC in order to have it assist us. The
instructions that PC can understand are very few compared to
humans, so we must break down the instructions more explicitly
and explain in detail.

Programming is the act of creating the instruction manual to ask
computers to perform a task.

Moreover, we also need to ask computers to perform a task in a
specific order. The instructions “Use a pencil to write words,” and
“Write words using a pencil” are the same for humans, but a PC
cannot understand the minute difference between the two. The
syntax, or the way to ask PC to perform a task, is specifically fixed,
and if we tell it the wrong way, PC cannot perform the task we feed
into it.

Furthermore, even if we write the instructions precisely, a PC still
cannot understand it. Our language and the language that PC can
understand are different. Even a phrase “Write a word” to a PC
would be gibberish. Therefore, we must translate the instruction to
PC language so that it can read them. This is called “compiling,” and

�2

Figure 1-2 Result of PC’s chore

Figure 1-3 Programming

a PC can finally start a task when we compile the instruction manual we created with programming (Figure
1-3).

1.2 Text-Based Language and Graphical Language

In the programming world, it is a tradition to write a program that displays “Hello” on the PC monitor as
a first step. Thousands of programming languages can be divided into “Text-based language” and “graphical
language.”

Text-based language - C code as an example
#include // Preparation to use display terminal
int main(){//Beginning of the program
printf(“Hello, World”);// Writing Hello
return 0;}// End of the program

In text-based languages we program by typing code with the keyboard in text editor such as the Notepad.
In this example, “printf” is the instruction to display “Hello, World” on the PC monitor. In text-based
languages, there are predetermined writing rules for every type of instructions. Programmers type in the
instructions based on these rules. To run the program, we need to compile the code, and once compiled, the
program will be executed in the order it is written in the notepad from top to bottom.

Graphical Language – LabVIEW as an example
In graphical languages, we program

by placing many different icons on the
monitor and connecting the icons with
lines (Figure 1-4). In this example, we
are programming by connecting the
icon with “Hello, World” written on it
and the “String” icon with a line. When
it is run, “Hello, World” is displayed on
the right window. Most graphical
programming languages provide their
own programming software, and
programming is done within that

�3

Figure 1-4 Graphical language - LabVIEW

software. This programming software is called “Development Environment.” In graphical languages, icons
are provided for each task you ask to the PC, and programmers use the icons and lines to program. In the
development environment, a run button is provided, and when you press the button, the program is compiled
and run automatically.

Either of the text-based or graphical language is superior than one another. There are pros and cons for
each. For example, website design is best handled with a text-based language such as JavaScript, not with
LabVIEW. However, a program that measures room temperature every five minutes with a sensor can be best
written with LabVIEW. Most programming languages used today are text-based. However, graphical
language such as LabVIEW and Simulink (product of Mathworks Inc.) are used very extensively in specific
fields such as engineering.

1.3 Physical Computing and LabVIEW

You may not think about programming in your daily life. I don’t believe there are many days where you
think to yourself “I felt programming today.” The reason why it is difficult to be conscious about
programming is because you do not use it in your daily life. To make PC and programming closer to our lives
and broaden the potential of computers, the concept of “Physical Computing” was born. The key point is
“bringing PC and programming more practical to our
daily life.” This does not mean that you study
programming every day; it means improving our daily
lives with PC and programming. For example, if you
often forget to turn off the lights in your room, you can
craft a system that automatically turns off the lights
using a PC and electronics kit. Recent gaming hardware
allows you to play by shaking the remote controller. This
is also an example of physical computing. The remote
controller contains a microcomputer that reads the
acceleration sensor and displays that data to humans
through the game monitor. It is important, even from the
point of view of studying programming, to incorporate
computers and programming into our daily lives.
Studying programming just for the sake of studying
would not stick to your mind. If you define a purpose to

�4

Figure 1-5 Arduino

study, it will accelerate the speed to acquire the
knowledge.

LabVIEW is good at handling systems made with
electronics kits. When you combine LabVIEW and
electronics kits, we are able to venture outside of
computers and measure the temperature or turn a light
switch on and off. LabVIEW may be the programming
language that is the best fit for the concept of physical
computing. To connect our physical world to a PC, we
need a hardware, a product made with electronics
manufacturing. In the previous years, it was difficult to
purchase the hardware privately since it was typically
expensive, but nowadays, because the notion of “make
simple things at low cost” is widespread, we are able to
purchase hardware at relatively low price and play with
it with programming. Let us introduce two LabVIEW-
friendly hardware types.

One of them is the Arduino (Figure 1-5). It is a
hardware that can be purchased at around 25 US
dollars, and it is very popular because of its simplicity
and ease of use. Since it has voltage input and output
features, it can read the voltage outputted by sensors or
turn on an LED. A sensor is an electronics component
that changes its output voltage based on condition. For
example, an optical sensor changes output voltage
based on the strength of light applied to it. By
monitoring this voltage, we can read the current
strength of light (Figure 1-6). Another hardware is
Raspberry Pi (Figure 1-7). This is around 60 US dollars,
but unlike Arduino, it is able to put on an OS. An OS is
a software needed to operate a PC such as “Windows”
or “Mac.” In other words, Raspberry Pi is a PC. You are
able to purchase a PC for under $100. Of course it is not

�5

Figure 1-7 Raspberry Pi

Figure 1-6 An optical sensor

a high spec PC, so you would not be able to play the latest computer games, but by having an OS, it is able to
perform more sophisticated tasks than Arduino. The reason why these two types of hardware are easy to use
from LabVIEW is because LabVIEW has the tools that allows users to use them easily. Usually when
connecting a hardware to a PC and using it from LabVIEW, one must perform complicated and laborious
procedures. However, LabVIEW provides a tool called LINX that allows users to skip these complicated
procedures. This way, users can focus on building what we want to build. By the way, do you know how
much LabVIEW costs? When you look up the price on web you may see that it is from several hundred
dollars to several thousand dollars. But don’t worry. It is free of charge. Previously, when using LabVIEW at
work or at home, you were required to purchase the license. However, in 2020, National Instruments decided
that for non-commercial use, i.e. using it for private hobby and not for business, anyone could use LabVIEW
for free. This version is named “LabVIEW Community Edition,” and there is no functional difference between
the Community Edition and the paid edition. To repeat, you may not use this free edition when using it for
business, and you must purchase a license for LabVIEW. Furthermore, if you wish to use LabVIEW’s
additional tools (called modules, toolkits or add-ons), you also need to purchase a license as of today.

1.4 The Best Use Cases of LabVIEW

Let us introduce again the fields that LabVIEW best works at. This is a little sophisticated and not directly
related to programming study, so feel free to skip this section. LabVIEW works the best at automated test and
control combined with hardware. The hardware mentioned here can be test instruments such as oscilloscopes
and function generators or familiar items such as cameras and motors. For example, at a machine factory,
LabVIEW is used to check if that machine is manufactured correctly without any errors. This is checked by
applying voltage to the machine and measuring that voltage to check for errors. In another example, a testing
system with camera is used to make sure that the printed words on a bag are printed correctly. As you can see,
LabVIEW is used in many companies by combining it with different hardware. Real examples can be viewed
on the website below.

http://www.ni.com/innovations-library/case-studies (Select your favorite industry from the “Industry”
section on the left side of the page.

�6

Article 1  
LabVIEW Heads Towards NXG

In 2017, National Instruments announced “LabVIEW NXG,” the next generation of LabVIEW.
LabVIEW NXG was not developed based off of LabVIEW and made from scratch. With the
similar functionality of LabVIEW remaining, LabVIEW NXG adds new functionalities such as
the user-requested zoom in and out of the window, improvement on project management, and

web development. Currently in 2020, not all features of LabVIEW is included in LabVIEW
NXG, and it is a work in progress. National Instruments promises to invest in the continuous development of
LabVIEW NXG, and it will become the mainstream in the near future. Is LabVIEW free now because National
Instruments plans to migrate to NXG? Seems not. LabVIEW NXG Community Edition can also be used for
free. More on this will be explained in Chapter 2.

�7

Figure C1-1 LabVIEW NXG programming window

�8

Chapter 2  
Using LabVIEW
Community Edition
Let us introduce LabVIEW Community Edition and the structure of this document. We will also explain how
to download and install LabVIEW Community Edition.
[Keywords] LabVIEW Community Edition, LabVIEW NXG Community Edition, Arduino, Creating User
Profile, Downloading LabVIEW Community Edition

2.1 Features of LabVIEW and LabVIEW NXG

LabVIEW was first introduced to the world in 1986. In those days it was customary to develop with text-
based language, so engineers first studied the language and after a while they began their actual job.
However, the learning process takes too much time, and engineers cannot get their actual job done quickly
enough. The first version of LabVIEW was innovated at this time in the United States. LabVIEW was not
popular at the time where the text-based language was the mainstream, but as the graphical programming
concept became gradually accepted, LabVIEW became the standard for the graphical programming language.
This was because for engineers who were not used to text-based language, graphical programming was faster
to learn, and they were able to focus on their actual jobs. After around 35 years, LabVIEW has stacked various
layers of improvements and feature additions. This includes features suggested by users as well. LabVIEW
became a must-have tool for many engineers.

A feature of LabVIEW includes “icons” and “wires.” In LabVIEW, we create a program by placing the
icons called “function node” on the window (Figure 2-1).

Each function node has its own roles, and 1 Button Dialog function node shows a message on a window.
We can compare using a function node with asking someone a chore such as “shopping” or “writing.” In
LabVIEW, data is passed through lines called wires. This “data” is the information needed to ask the PC to

�9

conduct a task. In the comparison with the chore, data is “what” task to conduct. In Figure 2-2, we ask the PC
to display (the task) the word, “Hello” (data).

In LabVIEW we create a program by placing the function node and connecting them with the wires. More
will be explained in Chapter 3.

In LabVIEW Community Edition, there are two versions, LabVIEW and LabVIEW NXG. At this time,
LabVIEW Community Edition is available only in English. LabVIEW NXG, however, already has a feature to
switch between languages, so you are able to use NXG with your preferred language. In this text we will use
LabVIEW for programming. As we discussed in the previous article, LabVIEW NXG is currently a work in
progress. When it becomes more developed, NXG will become the mainstream, so we would like to update
this text to use NXG as well.

�10

Figure 2-1 Function node Figure 2-2 Displaying “Hello”

2.2 Structure of this Document

This document is designed for the following audience:
(1) Persons in Junior High School or above
(2) Those interested in doing programming or wants to feel programming closer
(3) Those who want to work with electronics kits

There are three parts overall and are divided into chapters.
(1) In Part 1, we introduce LabVIEW and conduct some preparation to use LabVIEW.

(2) In Part 2, we provided you with a subject to learn LabVIEW programming with just a PC. In Chapter 3,
we will study the ways to control and program in LabVIEW using a simple application named “LED and
Current Limiting Resistor.vi.” We create a current limit resistance calculation program that model real
LED properties while studying ways to implement arithmetic operations and numeric comparisons and
design an LED simulator app.

(3) In Chapter 4, we will use the program called “SoundVIEW” that saves the sound taken from PC
microphone or PC application and perform frequency analysis called spectrogram and observe how this
program is made. We will then create a program that display sound data to a graph or play it in reverse to
study how to input and process data.

(4) In Part 3, we will use Arduino UNO and some electronics parts to learn programming.

(5) At the beginning of Chapter 5, we will learn how to use Arduino. You will experiment with the push
switch and DC fan to observe digital input and PWM output.

(6) In Chapter 6, we will create a program that measure the Voltage-Current property of an LED using an
LED, a resistor, and a variable resistor. As an example of data analysis, we will use linear regression to
calculate the coefficient of the PN junction of an LED.

(7) In Chapter 7, we will create a program that use the Arduino as an interface for MAX30102 module to
acquire the blood flow data and calculate the heartbeat. I2C connection will be mentioned. We will also
need to solder the pin headers.

�11

2.3 Installing LabVIEW Community Edition

Let us introduce the steps to install LabVIEW Community Edition. First create a National Instruments user
profile. This includes steps to input your personal information, so do this step with your parents or guardian
if you are underage.
1. Access the National Instruments web page.  

https://www.ni.com

2. Click “Log in” at the top right corner (Figure 2-3).
3. Click “Create Account >” (Figure 2-4).
4. Enter the required credentials and click “CREATE ACCOUNT” (Figure 2-5).

�12

Figure 2-3 Login

Figure 2-4 Create
user profile

Figure 2-5 Create user
profile (input)

After you created your user profile, let’s install LabVIEW Community Edition.
1. Access the website below and click on LabVIEW Community Edition link (Figure 2-6).  

http://www.quatsys.com/labview/1109/lvproraku.jp.html
2. Click “DOWNLOAD NOW” button and select “LabVIEW 2020 Community Edition (Figure 2-7).

�13

Figure 2-6 Link to LabVIEW Community Edition

Figure 2-7 Downloading window

http://www.quatsys.com/labview/

3. You will move to the download page. Click “DOWNLOAD” button at right of the page. You need to be
logged in with the user profile you created (Figure 2-8).

4. You will be asked about how to treat the file, so select “Save” and save the file to a folder of your choice
(Figure 2-9). (This will look different on browsers other than Microsoft Edge, but please save the file to
the PC one way or another.)

�14

Figure 2-9 Begin downloading

Figure 2-8 Download website

5. When finished, “ni-labview-2020-community-x86-_xxx.iso” will be downloaded. Right-click and select
“Mount” (Figure 2-10).

6. When mounting is finished, a virtual DVD drive will be made and all the files in the ISO file will be
displayed. Double click on “Install.exe” and run it (Figure 2-11).

�15

Figure 2-11 List of files in Install folder

Figure 2-10 Mounting the ISO file

7. When “Install.exe” is run, “NI Package Manager,” the software necessary to manage the National
Instruments software, will be installed. Read the license agreement and if you agree, select “I accept the
above license agreement” and click Next (Figure 2-12). Click Next a few times to begin the installation
(Figure 2-13).

�16

Figure 2-12 NI Package Manager License
Agreement

Figure 2-13 Begin installing NI Package
Manager

Figure 2-14 Selection window for LabVIEW
components

8. When the installation of NI Package Manager is complete, it will move onto LabVIEW installation
window. Here we select add-on packages to LabVIEW. Leave everything selected, and click Next (Figure
2-14).

9. As in NI Package Manager, the license agreement will be displayed. Read the license agreement and if
you agree, click Next (Figure 2-15, Figure 2-16).

10. You will be asked once more if all the installation components are correct. Click Next to begin the
installation (Figure 2-17).

�17

Figure 2-15 LabVIEW license agreement Figure 2-16 Microsoft license agreement

Figure 2-17 Final check for installation components

Figure 2-18 NI Customer Experience
Improvement Program

11. When installation is complete, you will be asked if you would like to join “NI Customer Experience
Improvement Program.” You can either join or not join, so select either option and click the OK button
(Figure 2-18).

12. Next we will need to “activate” the software (Figure 2-19). In order to use LabVIEW, you will need to
login with the user profile you created and perform activation. Click “LOG IN TO ACTIVATE” and a new
window will be opened (Figure 2-20). Login with your credentials here.

13. Once logged in, we will activate LabVIEW. Check to make sure “Check my account for licenses” is
selected and click “ACTIVATE” (Figure 2-21). In your user accounts, you already have the license for
LabVIEW Community Edition, so there are no other special steps required for activation (Figure 2-22).

14. Lastly, restart your PC. Make sure to save the files if you have any other software open on your desktop
and reboot (Figure 2-23).

15. This completes the installation steps for LabVIEW. Go to Windows start menu to make sure that
LabVIEW is properly installed (Figure 2-24).

�18

Figure 2-19 Activation window

Figure 2-20 Input user profile

�19

Figure 2-21 Activating license

Figure 2-23 Reboot

Figure 2-22 Activation complete

Figure 2-24 Windows Start menu

Article 2  
Installing LabVIEW NXG Community Edition

The steps to install LabVIEW NXG Community Edition is almost identical to installing
LabVIEW. Go to the link for LabVIEW Community Edition and select “LabVIEW NXG
Community Edition” to receive the installer (Figure C2-1).

�20

Figure C2-1 Download Link to LabVIEW NXG Community Edition

Part 2  
Getting Started  
with LabVIEW Programming

Chapter 3  
First Exposure to
Graphical Programming

In this chapter we will look at the basics of LabVIEW programming and elements specific to LabVIEW
programming.

[Keywords] Front panel, Run button, Run Continuously button, Abort Execution button, Pause button,
Control, Indicator, Block diagram, Control, Indicator terminal, terminal and wire color, Highlight Execution
button, data flow, VI icon, Help, Sub VI, New VI, Ctrl+T, Control Palette, Functions Palette, Drag and drop,
Wiring tool, Properties, Numeric Control, Numeric Indicator, Boolean Control, Bool Indicator

�21

3.1 Investigating the LED Properties in LabVIEW

LED (Figure 3-1) is short for Light Emitting Diode, and it is a
device that emits light when current flows through. LED has
advantages such as durable life and energy efficiency compared
to traditional light bulbs. In 2014 Nobel Prize for Physics was
awarded for the invention of the blue LED. Today LED is used in
everyday life, even around you. We will explain the principles of
the LED with the help of LabVIEW. LED has a direction, and
current flows only from positive side to negative side. The longer
side is positive and is called anode and the shorter side is
negative and is called cathode. When the voltage of the anode is
greater than cathode, current flows from anode to cathode. Inside
of the LED, positive ion and negative electrons are separated, and
when current flows through, these ions collide and the energy
emitted by the collision is show to our eyes as light (Figure 3-2).
Figure 3-3 is the circuit diagram including the LED. When we use LabVIEW, we can simulate the circuit with
programming instead of building the circuit in real life. That way, there would be no need to change resistor
parts to adjust the resistance or prepare multiple batteries for replacement. This process of recreating real-life
with programming is called simulation. Simulation is used to develop cars and airplanes as well.

�22

Figure 3-1 Green LED, Yellow LED,
Red LED

Figure 3-2 Principle of LED luminance Figure 3-3 Circuit diagram

Let’s boot LabVIEW. From the Windows Start menu, select NI
LabVIEW 2020 (32bit) to boot LabVIEW (Figure 3-4). Go to the
example folder for Chapter 3 and open LED Simulator.vi. The window
displayed should resemble Figure 3-5. Let’s run the program to
observe the LED behavior. In LabVIEW we call a program a “VI” (ˈvi
ˈaɪ). Click the Run button (white arrow) at the top left of the window to
execute the VI. When executed, the LED turns in red color (Figure 3-6).
Next, turn the “Current Limiting Resistor (Ohm)” dial to 500 and run
the VI. Notice that the LED light is a little dimmer. Clicking the Run
button every time we try a different dial is cumbersome, so click the
Run Continuously button next to the Run button to let the VI run
repeatedly automatically. To stop the VI, click the Run Continuously
button again.

We will explain each objects on the window. “Power-supply
voltage” determines the voltage of the battery. Typically either of
5/3.3/1.8 V is used, so the VI is designed for you to choose from these
three options. “Current Limiting Resistor (Ohm)” limits the amount of
current that flows to LED. When more current flows into LED, the
brighter that LED will light, but too much current flow cause electrons

�23

Figure 3-4 Booting from
Windows menu

Figure 3-5 Front panel for LED and Current
Limiting Resistor

Figure 3-6 Result of execution for initial state

within LED to bounce into each other too strongly
and will break LED. To avoid this we use a resistor
to control the current flow. The more resistance it has
the less current flows into an LED. “Forward
Voltage” is the minimum voltage needed to light an
LED. If voltage is too small, electrons bounce too
slowly and will not release enough energy to light an
LED. Finally, “Continuous Forward Current (mA)”
is the amount of current flow that breaks the LED.
As an example, settings shown in Figure 3-7
displays “LED Broken”, indicating that LED has
broken. If you create this circuit in real-life, you may
have broken your LED. However, you can use whatever settings in simulation and a real LED will not break.
This is a reason why simulation is used when companies develop new products such as electronics,
automobiles, and airplanes.

Try out different settings with LED Simulator.vi to get used to using LabVIEW.
(1) At what value of Continuous Current (mA) will LED break?
(2) When “Power-supply voltage” is changed from 5V to 1.8V, how should you modify other settings so that

LED turns in the same color as when the voltage was 5V? (There are multiple solutions)
(3) How could you have avoided the breaking of LED? What can be modified to avoid the damage?

3.2 Observing the LabVIEW Program

Now let’s look more closely at how this LabVIEW
program is made. The window you have been seeing
is called Front Panel, and it is a window used to
modify settings or view the return value of the
program. In programming we call such window a
User Interface (UI). An interface is a connection
between something and something else, and in case
of programming, UI is a connection between a user
and a program (Figure 3-8). Select from the menu
bar of LabVIEW “Window > Show Block

�2 4

Figure 3-7 LED broken

Figure 3-8 Front panel

Diagram,” and you will see a window with a white background. This is called Block Diagram. In LabVIEW,
we write the program in the block diagram and use the program from the front panel (Figure 3-9). You can
see from the block diagram how colorful it is. In LabVIEW a color is assigned to each type of data, i.e. orange
or blue from numbers, pink for text, etc. You can also see that objects with a same name is present both in
front panel and block diagram. We call them on the block diagram terminals, and almost every objects in the
front panel are coupled with these terminals in the block diagram. Objects with yellow background are called
functions, and they perform actions such as division or comparison between two values. Let’s observe how

this program works. Click on the Highlight
execution (Figure 3-10) and the lightbulb will turn
on. Run the VI, and you will see the program data
flowing in animation. Observe how the value set on
the front panel is displayed on the terminal and that
the front panel objects and the corresponding
terminals are paired. In LabVIEW, we program by
connecting the terminals and functions with wires. In
this example, the program is executed from left to
right, but in LabVIEW we can control the execution
flow of the program (ex: top to bottom, right to left,

�25

Figure 3-9 Block diagram

Figure 3-10 Highlight execution

etc.) by modifying the wiring. However, it is customary
to program LabVIEW from left to right. When you are
finished observing the program behavior, click on the x
button on the top right of the front panel to finish the
VI. Note that clicking the x button on the block diagram
just closes the block diagram only and does not finish
the VI. If you see the popup similar to Figure 3-11,
select “Don’t Save.”

3.3 Creating a Simple LabVIEW Program

Let’s now create a VI from scratch. We will take the
LED program as an example. Fist, close all VIs and open the LabVIEW startup window (Figure 3-13). To
create a new VI, select “File > New VI” as shown in Figure 3-13 or press CTRL and N keys on the keyboard at
the same time. You can use your mouse along with the keyboard to enable you to control LabVIEW quickly.
Now that you made a new VI, let’s take a closer look (Figure 3-14). To the left of the screen, the window with
gray background is the Front Panel, and we use this to control the program with buttons or observe the
measurement data with a graph. It is empty now, but we can add buttons and graphs to create a control panel.
To the right of the screen with white background is the Block Diagram, and we use this to create the program.
To begin your LabVIEW journey, let’s first create a program that performs mathematical operations such as
addition and multiplication. We will place four necessary parts on the front panel. On the front panel, right-

�26

Figure 3-11 Save dialog

Figure 3-12 Boot menu of LabVIEW Figure 3-13 Creating a new VI

click on the mouse. The Controls Palette will be
displayed (Figure 3-15). We will choose the necessary
parts from this palette and place them onto the front
panel. You may already have the palette displayed
without right-clicking the front panel. You can close this
palette and have it reappear by right-clicking on the
front panel.

Place the mouse over Numeric icon, and you will
see many parts related to numbers. Left-click on the
Numeric Control (Figure 3-16). As you can see on
Figure 3-17, you will be able to grab the Numeric
Control and move it. Left-click on the front panel again, and you are able to place it on the front panel (Figure
3-18). In LabVIEW, we create the UI window by selecting the parts from the palette and placing them on the
front panel. Similarly, place the Numeric Indicator (Figure 3-19). Notice that they look different. Numeric
Control is belongs to the Controls parts group, and the Numeric Indicator belongs to the Indicators parts
group. The Controls allows users to input data into the program by pressing buttons or inputting numbers.
We use indicators to get feedback from the program such as viewing the calculation result or graphs. Keep
this momentum and add two more numeric controls to set up the total of three numeric controls and one

�27

Figure 3-14 Front panel and block diagram

Figure 3-15 Control
palette

Figure 3-16 Numeric Control

Figure 3-17 Selecting the
numeric control

numeric indicator (Figure 3-20). You can change the name of the controls and indicators by double-clicking
on them. Since we cannot decipher what each control does when they all have the name Numeric Control, so
name them as shown in Figure 3-21. In the programming world, it is important to name everything correctly.
We cannot understand the purpose of each program modules if they are not named, and we cannot use them
if we cannot understand them. By including the necessary information in the name, we are able to create a

�28

Figure 3-18 Placing the numeric control Figure 3-19 Control and indicator

Figure 3-20 We cannot understand if unnamed

Figure 3-21 Front panel in current state

usable program. We have now completed the steps to create the front panel. Next let’s look at the block
diagram, We can switch between the front panel and the block diagram by pressing CTRL and E keys (Figure
3-22). This is the first time we open the block diagram, but you notice that some objects are already put on it.
When we placed controls and indicators on the front panel, these objects were automatically created. We call
these objects Terminals. A control or an indicator and a terminal are in pairs. The Numeric Control “Power-
Supply Voltage(V)” is paired with the “Power-Supply Voltage(V)” terminal on the block diagram. The value
you input on the front panel will be outputted from this terminal.
Let’s take a look.

Looking at the terminals, you may notice that the terminal you
just made look different from the ones in the example VI (Figure
3-23). Don’t worry, they are the same, yet they look different. Right-
click on the terminal and uncheck View As Icon to make the
terminal thinner. If you want the terminal to always look this way,
go to the menu bar and select “Tools > Options” to display the
options window (Figure 3-24) and uncheck “Place front panel
terminals as icons” in the Block Diagram category. Let’s set a value
in the control and display it on an indicator. To do this we need to
connect “Power-Supply Voltage(V)” control and “Current (A)”

�29

Figure 3-22 Block diagram in current
state

Figure 3-24 Options windowFigure 3-23 Terminals

indicator. In LabVIEW we connect these with the wire. Hover the mouse cursor over the “▷“ at the right of the

control terminal. The cursor changes to the bobbin icon (Figure 3-25).
This indicates that we can connect the wire. Left-click here and move the
mouse. Then you will see the dotted line follows the cursor (Figure
3-26). As you can see, we connect the terminals with wires to transfer the
data (Figure 3-27). After you connect the wire, put a value in the
“Power-Supply Voltage(V)” control and run the VI. You can also run the
VI by pushing CTRL and R keys together. Did the value you put on the
control get displayed on the indicator? Then delete the wire you just
created. To delete, click on the wire and once it is surrounded by the
dotted lines, press the Backspace or Delete key. Now, let’s use functions
to modify the program. Right-click on the block diagram. You can see
that just like on the front panel, a palette is displayed but it has a
different look (Figure 3-28). This is called Functions Palette and we can
use various functions that are included here. To use functions in
functions palette, we drag and drop just like we did on the front panel.
This time we will create a program that calculates the current flow into
LED based on the power voltage, forward voltage and resistance. Let’s
consider the calculation formula before we program. From Ohm’s Law,
current is voltage/resistance. Voltage is the amount of power voltage, but
we must not forget about forward voltage. The actual
amount of voltage applied to the resistor is forward
voltage subtracted from power voltage. Since forward
voltage is stable even when the current changes, we will
assume that forward voltage remains the same and use
only the resistance to calculate. Therefore, the formula
will be Current flow into resistor and LED = (power
voltage – forward voltage) / resistance. Let’s create the
program. First we will conduct subtraction. Display the
functions palette and select Subtract from Numeric
palette. Place it onto the block diagram (Figure 3-29).

Let’s look at how to use this function. Press the
CTRL and H keys. Context Help, or the window that

�30

Figure 3-25 Bobbin icon

Figure 3-26 Wiring

Figure 3-27 Wiring complete

Figure 3-28 Functions palette

tells you how to use the function, will be displayed (Figure 3-30). Press the same shortcut keys again and the
window will disappear. As you can see, if we input x and y on the left, the subtract function outputs the value
x-y from the right. Context Help shows the overview on how to use a function. For more information, click on
Detailed Help to display the help document with additional content. Now, let’s wire to the Subtract function
the “Power-Supply Voltage(V)” control to top left and "Forward Voltage(V)" control to bottom left. Wire
them the same way as we did for wiring the control and the indicator. Move the mouse cursor on Subtract
function and you will see orange circles. Place the cursor over that orange circle, and the cursor changes to the
bobbin icon and you will be able to create wires (Figure 3-31). Left-click on it and move the mouse to the “▷“

on the right side of the "Power-Supply Voltage(V)" control and left-click again to create the wire. Do the same
for "Forward Voltage(V)" control and wire it. Your block diagram should look like Figure 3-32. Finally, let’s
place the division. We will use Divide function. You will find this on the right of Subtract function in the

�31

Figure 3-29 Subtract function
Figure 3-30 Context Help for
Subtract function

Figure 3-31 Wiring to Subtract function

functions palette. Wire the function and the control and indicator the same way we did for subtraction. It
should now look like Figure 3-33. Input values on the front panel (Figure 3-34) and run, and you will be able
to check how much current flow through the LED.

By the way, we are currently able to input negative values into forward voltage, but this is a little strange.
Because forward voltage is the minimum voltage needed to light the LED, it will never be negative. In
LabVIEW, we can limit the value to be inputted into a control. Right-click on “Forward Voltage (V)” control
and select Properties at the very bottom of the right-click menu. When the properties window is displayed,
select Data Entry. Click Use Default Limits checkbox to uncheck it.
Change Minimum to “0” and Response to value outside limits to
Coerce. With this setting, the minimum value of forward voltage is now
0 and if any value lower than 0 is inputted, it will automatically become 0.
For convenience, make the value of Increment “0.1.” Press the OK button
to close the Properties window and check the control behavior. Notice
that value will never become lower than 0 and when you click the up or
down arrows on the left of the control, it will change by 0.1 (Figure 3-35).
This is often forgotten since it is not directly shown on the block diagram,
but it is very important to “set the value allowed to be inputted.”
Making the program easier to use will raise the reputation of your
program. By limiting the value that users can input, the program will not

�32

Figure 3-34 Front panel completed

Figure 3-32 Finished wiring to
Subtract function

Figure 3-33 Block diagram completed

process incorrect data. It is very important to think
about the usability, how easy to operate the program.
Now let’s save the VI. Go to the top menu bar and select
“File > Save” to save the VI. You can also save by
pressing CTRL and S keys. Name the VI as you like.

Let’s make this VI evolve a bit more. This time, let’s
modify it so that we are notified when current becomes
greater than the value specified and LED is damaged.
Add a numeric control and name it “Continuous
Forward Current (mA).” Similarly, from the Boolean
palette (Figure 3-36) add Round LED to the front
panel. Name it “LED Broken?” (Figure 3-37). We will
compare the calculated value of current and the value of
“Continuous Forward Current (mA)” control. From
Numeric palette in function palette, select Multiply
function, and from Comparison palette (Figure 3-38),
select Greater Or Equal? function and place them on
the block diagram. Wire them as in Figure 3-39. Do you
know why we are multiplying current by 1000? The

�33

Figure 3-35 Properties for Numeric Control

Figure 3-36 LED Indicator Figure 3-37 LED indicator placed

calculation result should be in amperes but the input to the maximum current control is in milliamperes, so
we include this to align the units. You should take a note on the color of “LED Broken?” control and the wire
connected to it. In programming, knowing what type of data we handle is important (Figure 3-40). The
orange and blue terminals and wires that we have been seeing deal with numbers. Orange can represent
decimal data such as “1.2345.” Blue only represents integers. Green is data called Boolean, and it only

handles two values, F (False) or T (True). Pink terminals
and wires handle letters or strings such as “Hello,
World.” In LabVIEW, each datatype is represented by
colors, so we can distinguish them by memorizing the
corresponding data and color. Run the VI and observe its
behavior. If current exceeding the maximum current
flows, “LED Broken?” indicator turns on and we can
understand that it is damaged (Figure 3-41). In reality, if
LED is damaged, the current no longer flows so the
current indicator should become zero. In LED
Simulator.vi these details are also implemented so check
it out.

3.4 Making the Program Run Repeatedly

Let’s customize the program further. Currently, if we

�3 4

Figure 3-40 Examples of data types

Figure 3-39 Completed block diagram

Figure 3-41 Result for LED damaged

Figure 3-38 Comparison Palette

change control values to observe the result, we needed to run the VI every time. This is cumbersome. Let’s
modify the VI so that the VI is always running and changing a value changes the result on the fly. In the world
of programming, we call the act of repeatedly running a
program looping. When looping, the program repeats a
specific task until it is ordered to stop looping. In LabVIEW,
loop is contained in the Structures palette (Figure 3-42).
Now, let’s make the calculation task we made so far run
repeatedly. Select While Loop from the palette. The mouse
cursor changes as in Figure 3-43. With this icon as the cursor,
surround the code we want to run repeatedly. Move the
mouse from top left to bottom right while holding onto the
click (Figure 3-44). Let go of the mouse once everything is
surrounded and a While Loop will be created (Figure 3-45).
Now the code surrounded by the loop will be run repeatedly
until ordered to stop.

Let’s run the VI!
Wait, you can see that the run button at top left is not the

usual white arrow (Figure 3-46). In LabVIEW, when there is a

�35

Figure 3-44 Loop in creation Figure 3-45 Loop created

Figure 3-43 Cursor after
selecting a structure

Figure 3-42 Structures Palette

problem with the program and cannot be run, the run
button becomes broken. What could be the cause of
this issue? Rest assured. In LabVIEW, there is a
mechanism that tells you where the problem is when
the run button is broken. Let’s try to run the VI even
though the arrow is broken. When you click on the
run button, a list of problems will be displayed
(Figure 3-47). In this case, it shows that “While Loop:
Conditional terminal is not wired,” so the root cause is
that there is nothing connected to the so-called
conditional terminal. Let us fix this right away. You
can press the Show Error button in the Error List to
jump to the cause of the issue. Conditional terminal is
the red icon located at the bottom right of the While
Loop. Right-click on this icon and select Create
Control (Figure 3-48). Now you can see that the run
button is fixed. In While Loop, in order to stop the
repeated task, we must pass a Boolean data such as a
button to this terminal. By following the step
instructed previously, LabVIEW automatically
creates a button Boolean control with “STOP”
written on it. Run the VI to make sure that the
change of value is applied immediately and that
pressing the Stop button stops the VI. We have now
created a repeated process, but there is one more
thing to do to run repeated task smoothly. When we
use the While Loop to repeat a process, PC will
process it at its maximum speed possible. This could
possibly cause some lag in the mouse cursor
movement or in the worst case scenario, cause other
software to stop. To avoid this from occurring, in
programming we create a wait time between
processes to allow the PC to perform other tasks
during that time (Figure 3-49).

�36

Figure 3-48 Block diagram so far

Figure 3-46 Broken Run Button

Figure 3-47 Error List

Place Wait Until Next ms Multiple function in the
Timing palette in the While Loop. This function inserts
a wait time between processes and lighten the workload
for a PC. We can also use this function when we want to
measure something in xx second intervals. We will
connect a constant to it. A constant is a value that will
not change when a program runs. Values defined in
society such as Pi or the speed of light is also an
example of a constant. To create a constant, place the
cursor to the left of the function, and when the cursor
changes to the bobbin icon, right-click and select Create
Constant. The unit is milliseconds so if we want to
process every 1 second, we will input “1000” (Figure
3-50). Now we have finished creating a program that
performs a calculation every second. Next let’s change
the power voltage to be selected from a set of
predefined values. Currently, any value can be used for
power voltage, but in reality, either of 5/3.3/1.8V are
often used. We will modify the VI so that users can
select from these three values. Delete "Power-Supply
Voltage(V)" control. Click on the control or the terminal
on the front panel or block diagram respectively, and
use Backspace or Delete key to delete. When the
terminal is deleted, an X is marked on the wire
connected to Subtract function. This means the wire is
broken, and this must be fixed to run the VI. We can
either delete the broken wire or use CTRL and B keys to
mass delete all broken wires. Place an Enum control in
the Ring&Enum palette (Figure 3-51) on the front
panel and rename it as "Power-Supply Voltage(V).”
Enum is enumerated constant and it is a dataset of a
string and an integer pair. You will see when you create

�37

Figure 3-50 Wait until Next ms Multiple function

Figure 3-51 Ring & Enum Palette

Figure 3-49 Timing Palette

one. Right-click on the Enum control and
display Properties. Select Edit Items tab in
the Properties. We will define the Enum
data here. Double-click on the white space
under Items column next to “0” and enter
“5V.” Press the Enter key to move onto the
next row and add 3.3V and 1.8V. Each
value corresponds to an integer, as in 5V is
to 0, 3.3V is to 1, and 1.8V is to 2. This
means that when user selects “5V,” the
value “0” will be used in the program.
Once you complete this, click the OK
button (Figure 3-52). Now we must make
the value of the power voltage equal to the
selected voltage level. In Enum, even if 5V
was selected, the actual value outputted
will be “0,” so this will yield calculation
such as “0V – Forward Voltage(V).” We
will modify the VI and use a Case
Structure here to make the program use the
same voltage level as selected in the
program. A Case Structure is used to
process different cases based on condition.
We change the process with way such as if
“oo” then “xx” or if “xx” then “oo”, i.e. If
button is pressed, process A will be
conducted, and if not pressed, process B
will be conducted. For this VI, we will
change the value we pass to Subtract
function based on which voltage is
selected. Case Structure is located in the
Structures palette as a Case Structure. We
use it the same way as a While Loop; select
it in palette and drag and drop from top

�38

Figure 3-52 Editing an Enum

Figure 3-53 Creating a Case Structure

left to bottom right where you want to place it. For
this example, create it as in Figure 3-53.

On the left side of the Case Structure, there is a
“?” terminal, and the data passed to this terminal
determines the case execution condition. When
Case Structure is first placed, it thinks that a
Boolean data will be inputted, so there are two
cases, True or False preset. By selecting the ◀▶ on

the top, you can change the page. Now, wire the
Enum we created to this “?” terminal. Notice that
the page was automatically renamed. Press the ▼
mark, and you will see two cases, 5V and 3.3V
displayed. Notice that there is no page for 1.8V
(Figure 3-54). Right-click on the top of the Case
Structure where the page name is displayed, and
select Add Case for Every Value. Now all the
power voltage patterns are displayed (Figure
3-55). Select the page with ◀▶ or ▼ marks to move

to the page you want to display. By creating a
program inside every page, we can determine the
process to be executed for each selection of the
power voltage value. Display the 5V page, and
place a DBL Numeric Constant in the Numeric
palette. Input “5” in this numeric constant. Connect
the numeric constant and the Subtract function
with a wire (Figure 3-56). There is a Case Structure
edge in between, but feel free to connect them as
usual as LabVIEW will process it. Once wiring is
complete, you will see a white square created on
the edge of the Case Structure. This is called a
tunnel, and it is automatically created when we let
out a wire from inside of structures such as a Case

�39

Figure 3-54 Not enough cases are created

Figure 3-55 Add Case for Every Value

Structure or a While Loop. Previously, we directly wired from the numeric constant to Subtract function, but a
tunnel is also automatically created if we click on the edge of the Case Structure in the middle of creating a
wire. The reason why the inside of the square is white is because this tunnel has not been defined a value to
output in other pages. We have not yet defined a value for 3.3V and 1.8V pages. Let us place a numeric
constant on each page and create 3.3V and 1.8V values respectively (Figure 3-57). When the value is defined
for all pages, the tunnel will be filled (Figure 3-58). Lastly, define the default value of the front panel objects.
Save the VI and close it. When we reopen the VI, notice that values you assigned on the controls are reset. In
LabVIEW, there is a setting known as default value,
and we can predefine the value of the controls and
indicators at the time VI is first opened. For instance,
set "Forward Voltage(V)" as 1.2V,　“Current
Limiting Resistor (Ohm)” as 300!, and
“Continuous Forward Current” as 30mA and
select from LabVIEW menu bar “Edit > Make
Current Values Default.” Save the VI and reopen it,
and you will see that the previous setting has been
preserved.

�40

Figure 3-56 5V case wiring complete

Figure 3-57 Processing for each case

This concludes the exercises for creating a VI, but feel free to work on the advanced topics below.

• Since current does not flow when LED is broken, we want to display “0” on current indicator. Use the
Select function in Comparison palette instead of a case structure to implement this.

• A broken LED is a serious condition. How can we notify the user that it is broken with a more obvious
visual effect other than “LED Broken?” indicator? Use One Btn Dialog function in Dialog & User
Interface palette and a case structure to display a popup message box when the LED is broken.

�41

Figure 3-58 Finished VI

Article 3: Programming with LabVIEW NXG

In LabVIEW NXG, there is no change in basics such as Control and Indicator, functions and
wires. The biggest difference is that in LabVIEW, front panel and block diagram were separate
windows but in LabVIEW NXG, they are combined in a single window. Their names have
been changed to Panel (Figure C3-1) and Diagram (Figure C3-1) respectively with new and
improved user interface. LabVIEW NXG allows you to switch languages within their UI so

you could program in the
language of your choice. You

are also able to create a website with
LabVIEW NXG, so the future of
programming may lie here in NXG.

�42

Figure C3-1 LabVIEW NXG Panel Window

Figure C3-2 LabVIEW NXG Diagram Window

Chapter 4
Making Your Own
Application
Get started making applications that you can enjoy and use in your hobby.
In this chapter, we will introduce the application of spectrogram that uses the recording and playback
function of PC, and show you how to create your application.

[Keywords] Spectrogram, Sound Control panel, Stereo Mixer, State Machine, State Transition Diagram,
LabVIEW Example VI, Finite Sound Input.vi, Graphics & Sound Palette, Flat Sequence Structure, Wait (ms)
Function, Array, Waveform Data Type, Reverse 1D Array Function, For Loop, Shift Register, 1D Array, Index,
2D Array, Intensity Graph, Type Definition, Measurement File

4.1 LabVIEW Programming for Your Hobby

LabVIEW was born over 30 years ago for engineers and scientists to use at work. Suddenly, if you were
told to use LabVIEW as a hobby rather than at work, you wouldn't immediately know what to use it for.

Home automation and control of railway models are extensions of LabVIEW used in the workplace, so you
will be able to program immediately. For other hobbies, using the LabVIEW graphical programming
language, you can do things you didn't realize before and create something more amazing than you might
imagine.

With the power of measurement and analysis that LabVIEW has improved over the years, we have come
up with a program that will attract a lot of people. The SoundVIEW (Figure 4-1) created for this eBook can be
enjoyed without purchasing any other device if there is a PC and LabVIEW. It uses a method called a
spectrogram that expresses changes in the frequency components of a sound with time. This graph has time
on the horizontal axis and frequency on the vertical axis, and the intensity of the frequency component of the
sound is represented by the gradation from yellow to red and black.

�4 3

If you like hiking, you may hear birds chirping while
walking along the mountain trails. Wouldn't it be great to know
the name only from the birds' voices? People who like wild birds have
recorded the song of birds and posted it on the website "Bird-
sounds.net" (Figure 4-2). Figure 4-1 shows the frequency analysis
using SoundVIEW while listening to the birdsong of "American
Robin" on a PC. In this way, you can see the sound of many wild birds
using SoundVIEW.

For those interested in speeches, for example, you can watch the
spectrogram in SoundVIEW while listening to a speech by high
school environmental activist Greta Thunberg at the UN Climate
Change Summit on YouTube. Song lovers can see Lady Gaga's song in
the spectrogram, jazz lovers can see Miles Davis's trumpet sound, and
poetry lovers can see Peter Dixon's recitation Robert Frost's poem. You
will surely find something fun using SoundVIEW (Figure 4-3).

�4 4

Figure 4-2 Bird-sounds.net

Figure 4-1 Front panel of SoundVIEW.vi

This chapter describes how to
create an application in LabVIEW.

First, let's operate SoundVIEW.
This program is designed to operate
according to the button operation.
After explaining the operation, we
briefly explain the SoundVIEW
block diagram. This program was
made with an architecture called a
state machine. In this chapter we
will create a record and playback
program step by step using this
architecture.

4.2 Operate the SoundVIEW
Program

Open SoundVIEW.vi from the
program folder in Chapter 4 (Figure
4-4). SoundVIEW has a recording
function, and you can select PC or
Mic as the sound source. If you select
PC, you can record the audio output
from the web browser or music
player with the function of Stereo
Mix (Figure 4-5) of Windows PC.

Depending on your computer,
Stereo Mix may not be enabled, or
Stereo Mix may not be displayed in
the recording tab of the Sound
control panel. In that case, search for
"Windows 10" "Stereo Mix" as a
keyword to find a solution. Stereo

�4 5

Figure 4-4 Select input source

Figure 4-3 Samples of spectrogram

Mix may appear as Playback Redirect or What U Hear.
In LabVIEW, sound devices are identified by an ID number. The

default device has ID = 0. If there is a default communication
device, it will be "ID = 1." The remaining devices will be numbered
incrementally.

Three devices are shown in Figure 4-5, but the external microphone
is disabled because it is not connected. The microphone is "0" and the
Stereo Mix is "1." If an external microphone is connected and enabled,
the external microphone is "0", the microphone is "1", and the Stereo
Mix is "2".

As you can see, the device ID changes depending on the PC state,
so we must change recStart subdiagram (Figure 4-6) to the
appropriate ID number (Figure 4-7).

�4 6

Figure 4-6 recStart subdiagram

Figure 4-5 Sound control panel

If you open and execute AvailableDevice.vi in the
program folder of Chapter 4, the sound source
recognized by LabVIEW is displayed (Figure 4-8). The
upper block is the input device and the lower block is the
output device. In this figure, the input devices used for
the recording function are a "microphone" (ID = 0) and a
stereo mixer (ID = 1). If you change the settings of Sound
control panel of Windows 10 with AvailableDevice.vi
open, close AvailableDevice.vi and then open it again.

Press Record button to start recording. The default
recording time is 5 seconds, but if you have a powerful
PC, changing it to a higher value may work. Press Rec
Stop button to stop recording. The waveform being
recorded is displayed in the graph below Rec Stop

�4 7

Figure 4-8 Confirmation of sound source using AvailableDevice.vi

Figure 4-7 ID number of sound source

button. Press Play button to play the recorded sound and display the spectrogram. When you click Save As
button, the file dialog is displayed. You can enter the file name and save it. You can load the recorded file with
Open button. Press STOP button to stop the program. The current status is displayed in SoundViewState.

Then, operate each button while checking the operation and reaction.

Looking at the block diagram, there is a case structure inside a large while loop (Figure 4-9). The case
structure has eight subdiagrams. The value of Enum “SoundViewState" connected to the case selector
changes according to the user's operation or program flow, and the subdiagram is executed selectively. Such a
program structure (architecture) is called a state machine.

Figure 4-10 shows a state diagram that outlines the operation of the program.
When Run button is pressed, the VI executes Initialize and waits for input in Idle. Idle waits for Record,

Play, Open, and Save As buttons.

�4 8

Figure 4-9 Block diagram of SoundVIEW

When Record button is pressed, Start Recording (recStart) process is executed and Write to Ring Buffer
(Recording) subdiagram continues until Rec Stop button is pressed.

When Rec Stop button is pressed, Stop Recording (recStop) is performed and Idle (idle) is performed.
Play, save and load are handled by pressing the corresponding button and return to Idle.
Even complex programs can be created by dividing the desired function into subdiagrams and making

state transitions that allow natural operations.
The spectrogram is created by sub_Spectrogram.vi in Play subdiagram (Figure 4-11). Double-click the

icon to open the VI and display the block diagram (Figure 4-12). sub_Spectrogram.vi takes data as the

�4 9

Figure 4-10 State diagram of SoundVIEW

input, processes it using the function in the Spectral Analysis Palette, and outputs a two-dimensional array
STFT spectrogram and some graph scales.

sub_Spectrogram.vi is called subVI, and the input, internal processing, and output are defined. Proper
use of subVIs can improve block diagram visibility and helps identify program errors. If you don't need to
pay attention to the details of the subVI block diagram, you can treat the subVI as a black box where you can
connect the inputs and get the appropriate output. When creating a large program, subVI can be executed
independently to check the function and improve the completeness.

A subVI corresponds to a subroutine in other programming languages, but many programming
languages do not allow subroutines to work independently. One of the benefits of LabVIEW is that you can
see the behavior of each subVI individually.

�5 0

Figure 4-11 “Play” subdiagram

�51

Figure 4-12 Block diagram of sub_Spectrogram.vi

4.3 Record and Playback Example Program

Look at the examples when you start a new project in LabVIEW. It usually gives a good starting point.
Open NI Example Finder by selecting Find Examples ... from the Help menu, as shown in Figure 4-13.

Select Directory Structure button. Open Sounds folder in Graphics & Sounds folder and select Finite
Sound Input.vi, as shown in Figure 4-14.

Then, Finite Sound Input.vi will open. Save it to your working folder. Enter "0" in Device ID and "50000"
in Samples / ch, and press the Run button while talking
to the microphone. The audio data should be displayed
on the graph for approximately 2.2 seconds, as shown in
Figure 4-15. Please note that the data is not recorded for
about 0.5 seconds from the beginning. Looking at the
block diagram (Figure 4-16), you can see that it was
recorded with a sampling frequency of 22050Hz, 2
channels, and 16-bit precision. Note that the icons are,
from left to right, (1) spanner (input setting) → (2)
glasses (input data) → (3) eraser (clear).

Now let's modify this example to create a program

�5 2

Figure 4-13 ”Find Examples...”

Figure 4-14 Sounds folder of NI Example Finder Figure 4-15 Finite Sound Input.vi

that produces sound from the speakers in the "Parrot fashion".
First, save Finite Sound Input.vi as parrot.vi.
Sound functions are located in Sound Palette of Graphic & Sound Palette (Figure 4-17). Select Output

to display the audio output function shown in Figure 4-18. Drag and drop the spanner icon, pencil icon,
hourglass icon, and eraser icon to the block diagram of parrot.vi. The hourglass icon Sound Output Wait.vi is
a function that waits until all data is output. Place and wire the icons as shown in Figure 4-19. Sounds

�5 3

Figure 4-16 Block diagram of Finite Sound Input.vi

Figure 4-17 ”Graphics & Sound” Palette Figure 4-18 ”Output” Palette

�5 4

Figure 4-19 Wiring sound output functions

Figure 4-20 Block diagram of "parrot.vi"

recorded by the microphone should be played immediately.
Let's change it to play after a few seconds. Insert a Wait (ms) function in the flat sequence structure and set

it to wait for two seconds. Now parrot.vi plays back the sound two seconds after it is recorded. Specifying the
recording time is easier than specifying the number of samples, so let's change that as well (Figure 4-20).

4.4 Waveform Data and Array

Save parrot.vi as reverse.vi. Let's create a program that plays sounds in reverse. The recorded data up to
this point is displayed with a thick brown line, and the audio data received by the microphone can be
returned to the speaker output by wiring. The recorded data handled here is a collection of audio data for the
left and right channels. It is stereo data because the number of channels is set to 2 in the audio format. Use
Indexed Array function to display the data for each channel. An array is a collection of data of the same type.

Each piece of data in the array is called an element and is specified by its index. Note that the index starts
from 0.

The left channel is the element with index 0 and the right channel is the element with index 1. For example,
when processing right channel data, use Index Array function to extract index 1.

�5 5

Figure 4-21 Index Array function of Array Palette

Drag and drop Index Array function from Array Palette. You can add more terminals by left-clicking the
bottom of the icon and dragging down. Enter the index of the element to retrieve in the left terminal. Here
they are 0 and 1 (Figure 4-21).

Using the Wiring tool, right-click the terminal to the right of Index Array function and select Create >
Indicator (Figure 4-22). A waveform indicator is created. Note that the Waveform wire is thinner after being
taken out as an element. Looking at the front panel, the waveform indicator consists of t0, dt, and Y, as shown
in Figure 4-23.

When you execute reverse.vi, the data is displayed on the waveform display. t0 is the start time of the
recording, and dt is the sampling interval in seconds. The dt value displayed is 45 !s, which is the reciprocal
of the sample rate 22050 (S / s) specified in the sound format. The recorded data array Y is also displayed
(Figure 4-24).

The number of elements in Y is the sample rate multiplied by the recording time (in seconds). The right
side of the array name Y is index display. Some elements of the array are displayed, and the index of the top
element is displayed in index display. The elements displayed will change when the value of index display is
increased or decreased.

The waveform data type is very useful for data acquisition because it records the initial time t0 and the
sampling interval dt so that the sample times of all elements can be calculated.

�5 6

Figure 4-22 Create waveform indicator

Figure 4-23 Created waveform indicator

Figure 4-24 Waveform indicator
filled with data after execution

Waveform Palette (Figure 4-25) is a collection
of functions that work with waveform data types.
Waveform data types are often used as inputs and
outputs for frequency analysis functions.

Drag and drop Get Waveform Components
and Build Waveform on the block diagram from
Waveform Palette. Then drag and drop Reverse
1D Array from Array Palette. Place and wire
these three functions as shown in Figure 4-26.

This allows you to reverse the order of the data
in the waveform data array.

Do the same for index "1".
Drag and drop Build Array from Array

Palette. The number of terminals of Build Array
can be changed by clicking and dragging the top

�57

Figure 4-27 Block diagram of reverse.vi

Figure 4-25 Waveform Palette

Figure 4-26 Reverse waveform data array

or bottom edge of the icon. Create an array of the two waveform data modified by Build Array and input into
Sound Output Write.vi (Figure 4-27).

When you run the completed reverse.vi, your words will sound like a distant foreign language. Maybe
Japanese?

Write down the phonetic symbols of your favorite words, read them in reverse, and record them. The
words played at that time should sound like the original words.

4.5 For Loop, Shift Register and Array

Now, let's take a break from making a recording and playback application and discuss For Loops and
Arrays. Familiarity with For Loops and Arrays makes programming in LabVIEW easier.

Figure 4-28 is a block diagram that uses a For loop to calculate the sum from 1 to N. The For Loop will
appear as if multiple sheets of paper are overlapping, and the code placed within it will be repeated a
specified number of times. Enter the number of iterations in the count terminal. The shift register is a

�5 8

Figure 4-28 Calculate sum from 1 to N

mechanism for transmitting the execution
result of the loop to the next iteration of the
loop, and the value inputted to the shift
register terminal at the right end is
outputted from the shift register terminal
at the left end in the next iteration of the
loop.

In Figure 4-28, "0" is input to the left
shift register terminal as an initial value
from outside the loop, so "0" is output from
the left shift register terminal in the first
loop iteration. Normally, the initial value is
connected, but there are special cases
where the initial value is not connected.

The iteration terminal, described as "i",
counts up from 0 each time the loop
executes. Add "1" to the iteration terminal
and add to the left shift register output.
The result is connected to the input
terminal of the right shift register and used
in the next loop.

By repeating the loop N times, the sum
of 1 to N can be obtained.

A terminal called tunnel is
automatically generated when you wire
inside and outside the loop. Two types of
tunnels are created on the right side of the
For loop in Figure 4-28.

Auto-indexed Tunnel outputs the
value of each iteration of the loop to an
array. When the loop executes 10 times, it
becomes an array of 10 elements. Tunnel
(Last Value) outputs only the Last Value
of the data that came to the tunnel.

�5 9

Figure 4-29 Tunnel Mode

Figure 4-30 Result of calculation with N = 10

For a For Loop, Auto-indexed Tunnel is the default, but you can right-click the tunnel and select Last
Value (Figure 4-29). Conversely, Tunnel (Last Value) is the default in a While Loop, and Auto-indexed
Tunnel can also be selected.
 When run with N = 10, the result looks like Figure 4-30. Turn on Highlight Execution and execute

ForLoopSum.vi to check the calculation process. Also check the value output from each tunnel.
There are conditional options for convenient tunnel usage.

�6 0

Figure 4-31 Front panel of PrimeNumber.vi

As an example of a conditional option, let's look at the Sieve of Eratosthenes program that outputs a list
of prime numbers less than a specified N. A prime number is a natural number greater than 1 and can only
be divided by itself.

Sieve of Eratosthenes means "if you know the prime numbers less than or equal to the square root of N,
you can remove all multiples of the known prime number from numbers less than or equal to N." When we
consider N = 10000, the prime numbers between 101 and 10000 are obtained by removing all multiples of
prime numbers less than or equal to 100.

Even if you want to know the prime numbers up to 10000, you just have to find the prime numbers up to
100, which is the square root of 10000, so I think that many people are impressed by the powerful guidelines.

The front panel of PrimeNumber.vi is shown in Figure 4-31. Enter the maximum number to search and
click Run button. The obtained prime numbers are output as an array. Figure 4-32 shows the block diagram.
The For loop on the left creates an array of natural numbers from 2 to the upper limit number to search. Enter
this array as the initial value in the shift register of the central While Loop.

In the While Loop, use the Delete From Array function to remove the index 0 element from the shift
register array. The deleted index 0 element can be obtained from the terminal of the Delete from array

�61

Figure 4-32 Block diagram of PrimeNumber.vi

function. The role of Delete From Array function here is to
split the input array into the first element and the other
elements.

Now let's see the process of finding the prime numbers in
the While Loop.

The element at index 0 on the first iteration of the While
Loop (iteration terminal "i" is 0) is 2. 2 is the first prime
number. The array of natural numbers from 3 to N is the input
to the For Loop, and only elements that are not divisible by
the prime number 2 are output as an array. As a result of
removing the multiples of 2, the index 0 in this array is 3.

The index 0 element of the array output from the shift
register at the next iteration of the While Loop (iteration
terminal "i" is 1) is 3 and is a prime number. This time the For
Loop removes a multiple of 3.

In this way, multiples of prime numbers are excluded each
time the While Loop is iterated.

Taking a closer look at the For Loop, it uses a conditional index tunnel to output an array of elements that
are not divisible by a prime number. Note that nothing is connected to the count terminal of this For Loop.
The array input for this For Loop is connected by the indexing tunnel, so the iteration of this For Loop will be
the number of elements in the input array.

Since the beginning of the array is always a prime number, check if it exceeds the square root of N. If it
does not exceed the square root of N, the process continues screening with that prime number.

If it exceeds the square root of N, the process ends.
The number of primes less than the square root of N and the number of primes remaining on the sieve are

output from the While Loop. Set the Build Array setting to Concatenate Inputs (Figure 4-33) and
concatenate the two 1D arrays into one 1D array.

You can expand the array's dimensions to 2D, 3D, or 4D by expanding the index display at the top left of
the array.

Two-dimensional arrays are often used to represent surface information. Figure 4-34 shows a sample
display of the cone function. We used a nested For loop to write the function values to a 300-by-300 two-
dimensional array. In addition to the usual two-dimensional numeric array indicator, you can visualize the
data using an Intensity Graph, a 3D Graph, or a 3D Mesh (Figure 4-35). 3D graphs and 3D meshes can be

�6 2

Figure 4-33 Concatenate inputs

created from the 3D Graph Palette in the Graph Palette of Controls Palette. There are some parameters for
each graph, and you can change the way they are displayed. Please see the help.

�6 3

Figure 4-35 Front panel of various graph indicator for 2D array

Figure 4-34 Block diagram for various graph indicator for 2D array

4.6 Build Waveform Data and SubVI

Before returning to record / playback application, let's see how to build the subVI we talked about in 4.1.
As an example, we will create a program that produces the Dual-tone multi-frequency (DTMF) signal

used for dialing a phone. DTMF is a method of identifying sixteen keys with a combination of four high
frequency components and four low frequency components.

PiPoPa.vi (Figure 4-36) is a program that generates the tone signal from the speaker by inputting the
push keys (0 to 9, A to D, * and #) of the telephone as a character string.

After entering the phone number in the String Control, press the Execute button and you will hear a
sound. You'll be surprised if a loud sound suddenly plays, so start with a low volume.

Figure 4-37 shows the block diagram.
Here, we use the typecast function to
convert U8 to a string.

The typecast function reformats the
data in memory so that the value could be
used as another datatype. Read the help
and use it.

The sound corresponding to the key is
generated by the For loop one by one.

sub_KeyString.vi is a subVI that

�6 4

Figure 4-37 Block diagram of pipopa.vi

Figure 4-36 Generates dual-tone multi-frequency signale

extracts only touch-tone characters from the string of String control (Figure 4-38). It converts strings into
ASCII code 0-255 (U8), and if the character corresponds to touch-tone, it outputs the data using conditional
index.

Figure 4-39 outputs a set of high and low frequency components for touch-tone characters.
Each column of the touch-tone keypad represents a high frequency component (1209 Hz, 1336 Hz, 1477 Hz

and 1633 Hz) and each row represents a low frequency component (697 Hz, 770 Hz, 852 Hz and 941 Hz). For
example, if key "6" is pressed, the high frequency component will be output at 1477Hz and the low frequency
component will be output at 770Hz.

Note that Key, 2D Array Constant of
string, has the same layout as the touch-
tone keypad.

Figure 4-40 shows the block diagram of
sub_DoubleTone.vi. This creates a signal
that combines the sine wave of the high
frequency component and the sine wave of
the low frequency component.

�6 5

Figure 4-39 Block diagram of sub_DTMF Tone.vi

Figure 4-38 Block diagram of sub_KeyString.vi

The functions needed for waveform generation are available in Waveform Generation Palette of Signal
Processing Palette in Figure 4-41. I used Sine Waveform.vi. Input sampling info, frequency and amplitude
in Sine Waveform.vi. Add two waveform data to make a composite wave.

The front panel is Figure 4-42.
Set the input and the output terminals when you create a subVI.

�6 6

Figure 4-41 Waveform Generation Palette

Figure 4-40 Generate DTMF signal

Before the terminals are configured, there is a blank connector pane at the left of the default icon, as shown
in Figure 4-43. The general rule is to place input terminals on left, output terminals on right, and error
terminals on bottom for ease of wiring on the block diagram.

Figure 4-44 shows the “First Frequency (Hz)” control clicked after clicking the upper left terminal. This is
how you associate the input terminal with the control and the output terminal with the indicator. To cancel
the associated terminal, right-click the terminal and select Disconnect This Terminal (Figure 4-45).

You can also create your own icon design. The VI used in this book is unified with the cherry blossom icon.
It would be better if the VI's functionality could be represented in an icon, but it hasn't reached that point.

�6 7

Figure 4-43 Connector Pane

Figure 4-44 Connect terminal and control
Figure 4-45 Disconnect This Terminal

Figure 4-42 sub_DoubleTone.vi

Double-click the icon to
open the icon editor shown in
Figure 4-46. Now use
Templates, Icon Text,
Glyphs, and Layers to
represent the VI's
functionality in an icon.

4.7 Record and Playback Program

Let's create a program that can record, playback, read files, and save files.
It is a simplified version of SoundVIEW. This program has 6 states: initialize, recording, play, save, load

and end.

From the File menu, click New VI.
Save it as easyRecorder.vi.
Create an Enum (Figure 4-47) on the front panel and name it "my_state."
Right-click the Enum "my_state" and select Edit Item ... (Figure 4-48).
Enter the 6 item names as shown in Figure 4-49.
Right-click the Enum "my_state" and select Make Type Definition (Figure 4-50).
Right-click the Enum "my_state" and select Open Type Definition (Figure 4-51).
Save it as “my_state.ctl."

When you close the my_state.ctl window, you will see a dialog box that says "Replace the original control
'my_state' with 'my_state.ctl' ?"

Click Yes (Figure 4-52).

�6 8

Figure 4-46 Icon editor

�6 9

Figure 4-47 Create Enum

Figure 4-51 “Open Type Def.”

Figure 4-52 Confirmation dialog

Figure 4-50 “Make Type Def.”

Figure 4-48 Edit items… Figure 4-49 Input item name

Create a shift register in the While Loop (Figure 4-53).
Right-click the Enum "my_state" to create a constant, as shown in Figure 4-54.
Set the my_state.ctl constant to “initialize” state. Connect it to the left shift register from outside the loop.
When you connect the selector terminal of the case structure and the shift register, the item names

“initialize” and “recording” of my_state.ctl are displayed on the case selector label of the subdiagram.
Display the recording subdiagram, right-click the outer frame of the case structure, and select “Add Case”

from the pop-up menu to add a case, as shown in Figure 4-55.
Similarly, add cases to create all cases. You now have 6 subdiagrams (Figure 4-56).
There is also a way to create a subdiagram for all items of Enum my_state at once, right-click the frame

outside the case structure and select “Add Case to All Values” from the popup menu.

We have set "my_state" to 6 items, but now we realize that we also need a “stand by” state.
Right-click the entered enumeration "my_state" and select “Open Type Def” (Figure 4-57).

The type definition for the Enum "my_state" opens.

�7 0

Figure 4-53 Add shift register Figure 4-54 Create enum constant

�7 1

Figure 4-55 Add subdiagram next to “recording”

Figure 4-56 Create 6 subdiagram Figure 4-57 Open type definition of my_state

 Click the “Insert” button and add “stand by" after "Initialize" (Figure 4-58).
The Enum "my_state" constants connected to the shift register are also updated, as shown in Figure 4-59.

State machines often include enum constants, so you should be able to feel how type definition can make
adapting to future changes easier.

Add a stand by subdiagram after initialize subdiagram(Figure 4-60).
Add some buttons and graphs to the front panel (Figure 4-61).
 The stand by subdiagram outputs to the shift register to move to the appropriate subdiagram depending

on the button pressed (Figure 4-62).

�7 2

Figure 4-58 Insert “stand by"

Figure 4-59 Enum “my_state" constant
updated automatically

Figure 4-60 Add
subdiagram “stand by”
next to ”initialize”

�7 3

Figure 4-61 Add some buttons and graphs to the front panel

Figure 4-62 “stand by” subdiagram

The recording subdiagram (Figure 4-63) and play subdiagram (Figure 4-64) are created by copying the
recording and playback portions of parrot.vi.

Collect configuration parameters in the initialize subdiagram (Figure 4-65).
The save subdiagram (Figure 4-66) and load subdiagram (Figure 4-67) use Write to Measure File and

Read from Measure File on File I/O Palette.

�74

Figure 4-64 “play” subdiagram

Figure 4-63 “recording” subdiagram

�7 5

Figure 4-65 “initialize” subdiagram

Figure 4-67 “load” subdiagram
Figure 4-68 Select options for “Write
to measurement file” on dialog box

Figure 4-66 “save” subdiagram

Large light blue icons such as Write to Measurement File and Read from Measurement File are called
Express VIs.

Double-click the icon to display the dialog box where you can set the parameters.
Figure 4-68 shows the Write to measurement file dialog box, and Figure 4-69 shows the Read from

measurement file dialog box.
Saving in text format is convenient because it can be opened in a spreadsheet, but the file size tends to be

larger than binary. Find the file format that suits your needs.
Figure 4-70 is the end subdiagram.
Figure 4-71 shows the front panel during Execution.

�76

Figure 4-69 Select options for “Read
from measurement file” on dialog box Figure 4-70 “end” subdiagram

�7 7

Figure 4-71 Front panel during Execution

Article 4 LabVIEW NXG Web Affinity

The websites you visit each day is created by combining various programming languages such
as HTML, CSS, and JavaScript. Therefore, it is difficult to create a website from scratch.

LabVIEW NXG Community Edition comes with add-on software called the "Web
Module" (Figure C4-1) that allows you to easily create a website.

Base of a website is usually made with the programming language called HTML. However, Web Module
automatically converts your VI into HTML
code, so you can modify a few small parts
to finalize the webpage.

In order to publish the website to the
rest of the world, you need a PC that runs
your website application 24 hours a day,
365 days a year. If you try to do this at
home, it will cost you electricity.

However, the web module also comes
with a software license called "SystemLink
Cloud" (Figure C4-2). Upload the website
app to the cloud and it will run on the
cloud. If you follow the access procedure,
you can access the website from outside.
Of course, there are security settings as
well, so you can prevent access to
strangers.

�7 8

Figure C4-2 SystemLink Cloud

Figure C4-1 LabVIEW NXG Web Module

Section 3
Electronics projects with
LabVIEW and Arduino

Chapter 5
LabVIEW and Arduino
In this chapter, we use Arduino and LabVIEW to get a feel for physical computing
(interactive systems that can sense and respond to the world around them). We
deploy LINX firmware to an Arduino board and program it with LabVIEW. We
use digital I/O and analog output with a push button switch to control fan speed.
[Keywords] Blinking LED, Arduino IDE, COM port, breadboard, LINX, LINX
Firmware Wizard
[Parts used] Arduino UNO x1, breadboard x1, push button switch x1, 100Ω
resistor x1, 5V DC fan x1, wires x4

5.1 How to Install Arduino IDE and Program a Blinking LED

The Arduino is a microcomputer board invented in 2005 in Italy. All its hardware schematics and source
code are available for free under public licenses. As a result, the Arduino sparked a revolution almost

�79

Those just starting electronics projects are encouraged to browse the various
introduction videos on YouTube

overnight and is now being used for do-it-yourself electronics projects all over the world. Projects range in
difficulty from a simple weather display system, a fingerprint scanning garage door opener, and even a DNA
sequencer. You can even build your own Arduino for about $5
using parts from your local electronics store. In this guide, we
use one of the most popular Arduino board: the Arduino
UNO. We will use a free development tool called Arduino IDE
(Integrated Development Environment) for programming the
board. There are countless tutorials online that can teach you
how to program the UNO with sensors and motors. Simply
search the web for “Arduino” and a sensor name (e.g.
“accelerometer”) and “project”, and you’ll find dozens of
great tutorials and sample projects!

Let’s start by downloading the Arduino IDE:
Find the Arduino CC homepage by following this link

(https://www.arduino.cc), or by searching the web for
“Arduino CC” (Figure 5-1).

Go to the Arduino IDE download screen by selecting
“SOFTWARE” and then “DOWNLOADS”.

Select the “Windows installer” (Figure 5-2).
Select either “Contribute & Download” or “Just download”

to begin your download (Figure 5-3).

Once the download is complete, run the installer to begin
your installation. Should you have any issues during the
installation, you can find installation guides by searching the
web for “Arduino IDE download”.

Once the installation is complete, let’s open the Arduino
IDE.

We can see whether the Arduino is functional by writing a
simple program to blink the LED. Let’s try running a sample
program that does this:

�80

Figure 5-1 Arduino CC homepage

Figure 5-2 Arduino IDE download screen

Figure 5-3 Download

In the Arduino IDE menu bar, select File >> Sketch >>
01.Basics >> Blink (Figure 5-4). A window named
Blink.ino will open (Figure 5-5).

Connect the Arduino UNO to your PC via a USB cable.
In the Blink.ino window menu bar, select Tool >>

Board >> Arduino/Genuino UNO (Figure 5-6).
In the Blink.ino window menu bar, select Tool >>

Serial Port >> [your port with the Arduino UNO] (Figure
5-7) . Deploy and run the program on your Arduino UNO
by clicking the run button on the top left corner of the
window (the right-facing arrow button shown in Figure

�81

Figure 5-5 “Blink.ino” window

Figure 5-4 Open sample program, Blink

Figure 5-6 Select “Arduino/Genuino UNO”

5-8).
Confirm that the Arduino UNO LED (shown in orange in Figure 5-9) is blinking every second
In fact, your Arduino UNO LED was probably already blinking every second when you connected to it via

USB since UNOs are generally shipped with the Blink sample program already deployed. Let’s try changing
the blink speed to make sure we’re in control:

In the Blink.ino window, change line 2 from “delay(1000);” to “delay(100)” as indicated in Figure 5-5.
Deploy and run the program on your Arduino UNO by clicking the run button on the top left corner of the

window (the right-facing arrow button shown in Figure 5-8).
Confirm that the Arduino UNO LED now blinks several times per second.

5.2 Arduino Inputs and Outputs

Let’s learn about the Arduino UNO’s primary input and output pins in Figure 5-9.

Pins 2 through 13 at the top of the figure can be used for digital input or output. Pins 0 and 1 are used for
USB serial communication, so they’re generally not used for digital I/O. Pin 13 is internally connected to the
LED we were just controlling. Pins with a tilda (~) before the number can also be used to create a PWM (pulse

�82

Figure 5-8 Upload “Blink.ino”Figure 5-7 Select your port with Arduino UNO

width modulation) signal, which allows you to
adjust an LED’s brightness or change a fan’s
speed between a range of 0 and 255. This is done
through a 480Hz 0-to-5V pulse signal with 256
different pulse widths.

The pins at the bottom of Figure 5-7 are the
analog input and the power source pins. Pins A0
through A5 each read 0-5V at roughly 5mV
increments, but pins A4 and A5 can also be used
for I2C communication (explained further in
Chapter 7 of this guide).

You can continue reading this guide if you’d
like a more intuitive way to program the Arduino
using LabVIEW! (If you’d like to know more
about programming using the Arduino IDE, there
are hundreds of helpful tutorials online; just
search the web for “Arduino IDE tutorial”.)

5.3 Controlling your Arduino with LabVIEW

You can use your Arduino’s I/O ports from LabVIEW
using a LabVIEW addon named LINX. LINX is a free
addon provided by Digilent Inc (a National Instruments
Company) and is a convenient way to control common
embedded platforms like Arduinos, Raspberry Pis, and
BeagleBone Blacks using LabVIEW. They have a webpage
on LabVIEW MakerHub with tutorials, FAQs, and support
forums, so please visit them for more information (Figure
5-10).

After deploying the LINX firmware to your Arduino,
you can send commands and data via the serial port with
easy to use LabVIEW VIs. LabVIEW Community Edition
has LINX preinstalled, but on other Editions you will need

�83

Figure 5-9 LED and input / output pins of Arduino UNO

Figure 5-10 Webpage on LabVIEW MakerHub

to install LINX through the VI Package Manager (Figure 5-11). Although easy to use, the LINX interface
introduces some latency between commands and their responses and is not recommended for high-speed
communication. In Chapter 7, we will cover how to control an Arduino without using LINX.

We will use the LINX Firmware Wizard to deploy the LINX firmware to the Arduino UNO. (The LINX
firmware is just another Arduino program, so we can deploy other programs like Blink.ino and use the
Arduio for other things as well.)

�8 4

Figure 5-11 VI Package Manager Figure 5-12 LINX Firmware Wizard..

Figure 5-13 Select Arduino UNO Figure 5-14 Select serial port

From the Tools menu, select MakerHub -> LINX -> LINX Firmware Wizard (Figure 5-12). In the next
window, select Device Type -> Arduino UNO and press the Next button (Figure 5-13). Next, select the COM
port with your Arduino UNO and press the Next button (Figure 5-14). The next screen with ask you to choose
between Firmware Version and Upload Type, but just click the Next button on the bottom (Figure 5-15). The
LINX firmware deployment will then begin (Figure 5-16). When the deployment is complete, the window
shown in Figure 5-17 will appear. Click the Launch Example button to load LINX – Blink (Simple).vi.

�85

Figure 5-15 Click “Next” button Figure 5-16 LINX firmware deployment

Figure 5-17 Deployment is complete Figure 5-18 LINX - Blink (Simple).vi

Leave the “Digital Output Channel” at 13, select the serial port, and click the Run button (Ctrl+R, or the
arrow button on the top left of the window). It will take about 5 seconds to respond, but you’ll soon see the
Loop Rate (Hz) updated to 100 which means the program has started (Figure 5-18). You can then use the LED
Control button to turn the Arduino LED on or off.

Now, we are ready to control the Arduino. Please look at the digital output sample block diagram in
Figure 5-19.

The reason why the program didn’t respond right away was because it was checking the deployed LINX
firmware in the Open.vi. The command being sent to the Arduino depends on the board type, so the program
takes the time to make sure it’s connected to the correct board type.

5.4 Make a Switch Counter

Unplug the Arduino from USB port before wiring. Let’s make a program for digital-input. A counter
counts up one by one when the switch is pressed and goes back to 0 when it exceeds 10.

�86

Figure 5-19 Block diagram of “LINX - Blink (Simple).vi”

Place a tact switch and a resistance on the breadboard as
shown in Figure 5-20. The two pins on same side of the
tact switch are conducted when the switch is pressed.
Breadboard contains multiple metal rails in it. You can see
the metal rails as shown in Picture 5-1 when you remove a
tape on back side of it. Once pins of components are
inserted to holes of breadboard, it establishes electrical
connections by sandwiching the pins with springs of the
rails. Breadboard is useful because it can make a circuit
without soldering iron, which helps you to do trials and
errors easily . Be sure to check positions of the rails inside if
it’s your first time to use breadboard since there are various
types of breadboard.

The connection starts from 5V pin of the Arduino and

�87

Picture 5-1 Metal rails in breadboard

Picture 5-2 Placement and wiring of partsFigure 5-20 Wiring diagram

continues to the left pin of tact switch, the right
pin of that, 100" resistance and the ground.

Connect Pins 8 to the same rail as the right
pin of the tact switch and the resistance are
connected. Compare your wiring with Picture
5-2.

Use a digital I/O sample VI LINX – Digital
Read 1 Channel.vi. As shown in Figure 5-21,
select “Find examples..” from help menu
(Figure 5-22).

Following Figure 5-23, select a serial port

�88

Figure 5-22 Find Examples…

Figure 5-21 Select “Find examples..” from help menu

connected to the Arduino and set DI Channel to 8, then press the run
button. Check if DI Values turns ON as you press the tact switch. A
block diagram looks similar to that of LINX - Blink (Simple).vi
(Figure 5-24).

Save the program as PushCounter.vi, let’s make a counter which
counts up when the switch is pressed and released, and goes back to
0 when it exceeds 10.

Hint 1:Wait until the switch is turned OFF after it’s turned ON.
Hint 2:Keep counter value by using shift register.
Hint 3:Input 0 to counter value if counter value exceeds 10.

�89

Figure 5-24 Block diagram of “LINX - Digital Read 1 Channel.vi”

Figure 5-23 LINX - Digital Read 1 Channel.vi

5.5 Make a Fan Controller

Unplug the Arduino from USB port, make additional
wiring for a fan as shown in Figure 5-25. Connect the
black wire to ground, the red wire to Pins 9. Refer to
Picture 5-3 as well.

Open a sample VI of LINX, LINX - PWM 1 Channel.vi
through NI Example Finder. Connect the Arduino to USB
port, configure serial port settings of LINX - PWM 1
Channel.vi. Change PWM channel to “9” (Figure5-26).

Press the run button and input "0.5" to Duty Cycle
(0-1). You may find the fan starting to move.

Even if the fan does not start while Duty Cycle is set to
"0.0~0.4", don’t worry, it’s not something wrong with your
Arduino.

It’s a good habit to put default value or value range into
label of Control, for example Duty Cycle (0-1).

That can be effective for those who associate PWM with
0-255 to avoid inputting values more than 1.

However, it is not user-friendly and dangerous
sometimes because using the Increment and Decrement
Buttons may input out of range values such as "1.5" or
"-0.5".

In such cases, change Maximum, Minimum and
Increment setting in Data Entry tab (Figure 5-27)in the
property as shown in Figure 5-28.

A block diagram looks similar to Figure 5-29. Now you
can know that you should input value "0-1" to PWM Set
Duty Cycle.vi.

Then, control fan speed with the tact switch by
customizing PushCounter.vi which counts up value with
the tact switch.

�90

Figure 5-25 Wiring diagram

Picture 5-3 Placement and wiring of parts

�91

Figure 5-26 LINX - PWM 1 Channel.vi Figure 5-27 Numeric properties dialog box

Figure 5-28 Set data entry
Figure 5-29 LINX - PWM 1 Channel.vi

You may see that a block diagram of PushCounter.vi is similar to Figure 5-30.

Multiply the counter value by "0.1" and connect it to input terminal of PWM Set Duty Cycle.vi.
The Functions palette of LINX can be found in MakerHub > LINX (Figure 5-31). Digital I/O, Analog I/O

and PWM functions are in a Peripherals folder. PWM Set Duty Cycle.vi can be found in directory shown in
Figure 5-32.

Now the block diagram looks like Figure 5-33
When the counter value gets increased, fan’s speed gets faster. And the fan stops with the counter value 0.

Although it seems working well, it’s still bothersome to stop the fan. It can be stopped only after pressing
button till the counter value gets 10.

�92

Figure 5-30 PushCounter.vi

Figure 5-31 Functions palette of LINX Figure 5-32 PWM Set Duty Cycle.vi

FanControlWithLongPushStop.vi of Figure 5-34 is a program that has been customized to be able to
stop when the tact switch is held down for 2 seconds.

Tick count (ms) measures time while the tact switch is held down. The program outputs True if it’s less
than 2 seconds. When [“≦10 counts value” and “≦2 seconds”] it uses the counter value as it is, but make it
back to 0 in other case.

Make wiring simple by binding channel numbers of the tact switch and the fan into a cluster named
Hardware Setting. (Figure 5-35)

�93

Figure 5-34 FanControlWithLongPushStop.vi

Figure 5-33 FanControl.vi

Because FanControlWithLongPushStop.vi stops after the tact switch is held down for 2 seconds and
“released”, let’s customize the program so that it can stop without releasing the tact switch but only holding
the switch for 2 secounds.

Although FanControlWithLongPushImmediateStop.vi (Figure 5-36) seems working well because the
fan stops anyway, there is only one “count”.

Please customize it to work correctly by inserting While loop to wait for Digital Read.vi outputting False
after execution of PWM Set Duty Cycle.vi is completed.

In the end, some Notes for you. Functions of LINX
have cluster terminals named LINX Resource on its top
as input/output.

You can not connect LINX Resource wires to more
than 2 LINX functions by making wire branch since
LINX works by sending commands and receiving
response with specific Arduino.

Even though an error may not occur sometimes,
place functions by connecting each other with daisy-
chain.

�94

Figure 5-36 FanControlWithLongPushImmediateStop.vi

Figure 5-35 Front panel of
FanControlWithLongPushStop.vi

5.6 Change the Operation of the Switch

How was the customizing FanControlWithLongPushImmediateStop.vi?
Didn’t your block diagram stick out of your display?
By the way, Boolean Controls in LabVIEW has 6 types of mechanical actions as shown in Figure 5-37.

Behavior of PushCounter.vi which you programed in the section 5.4 Make a Switch Counter was that

“counting up when the tact switch is pressed and then released”. This behavior is close to that of Latch When
Released in 6 types of mechanical actions.

We’d like to introduce a program which we implemented the switch behavior of Latch When Released
programmatically.

Block diagrams of Push Counter(LatchWhenReleased).vi (Figure 5-38) and Fan Control with Long
Push Stop(LatchWhenReleased).vi (Figure 5-39, Figure 5-40) were quickly coded by a professional, so
please try to decipher those.

�95

Figure 5-37 mechanical actions of
Boolean Control

Figure 5-38 Block diagrams of ”Push
Counter(LatchWhenReleased).vi”

�96

Figure 5-39 ”Fan Control with Long Push Stop(LatchWhenReleased).vi”（False & True Case）

Figure 5-40 ”Fan Control with Long Push Stop(LatchWhenReleased).vi”（True Case）

Article ５  
LabVIEW NXG and Hardware

Data Acquisition Device (DAQ for short) is the hardware that can measure voltage and
input/output digital signal. Used by connected to PC with USB and so on. In LabVIEW NXG,
there is a big change to DAQ programing.It is necessary to configure MAX/min of voltage

range and a number of times to measure voltage for 1 second in order to use DAQ, which is
checked after completing most of program in almost all cases.

In LabVIEW NXG, you can check and configure these settings of DAQ without programming. (Figure
C5-1). Moreover, you can use a program with a diagram which is generated automatically based on these
settings.

LabVIEW was originally developed in order to equip non-programmer engineers and scientists with skills
to make a program for measurement and controlling.LabVIEW NXG has strongly succeeded this purpose and
can do more things without programing compared to LabVIEW.

�97

Figure C5-1 Hardware project window of LabVIEW NXG

�98

Chapter ６

Investigating LED
Properties
We will use the 3 analog input channels of the Arduino to measure the voltage-current properties of the LED
(Picture 6-1). We will apply the measured data into formula to acquire the regression curve. The formula is a
little advanced, but this is an example of the data analysis.
[Keywords] X-Y Graph, 1D Array Sort, Logarithmic Transformation, Linear Regression
[Parts used] 1 Arduino UNO, 1 breadboard, 1 LED, 1 resistor (100!), 1 Variable Resistor (10k!), 6 wires

6.1 Assembling the Experimental Circuit for LED Voltage-Current Properties

When lighting the LED, we must place a current limiting
resistor to forbid too much current flow into the LED. The current
flow into the LED increases exponentially when the voltage
applied increases beyond the forward voltage (Vf), and affects
the LED luminance greatly. Since it is more difficult to control the
luminance with voltage than current, we include resistor into the
circuit to alter the current. In this chapter we will observe the
exponential growth of the current. In order to conduct the
experiment, we will need an LED, a 100! resistor, a 10k!
variable resistor, 6 wires, a breadboard, and an Arduino UNO.
Further explanations on the variable resistor and the experiment
circuit is on the 6. Appendix. Remove the Arduino from PC’s
USB port and wire it as shown in Figure 6-1.

Connect the 5V pin of the Arduino to the 10k! variable
resistor, 100! resistor, and the LED in series and the other end of

�99

Picture 6-1 Measuring V-I properties of
LED

the LED to the Arduino ground pin. Note that the variable resistor has three legs. Turn the knob to the
leftmost position and place the variable resistor on the table so that the tip of the arrow is facing down left.
Looking from the top, connect the left pin to 5V and center pin to 100! resistor. Since LED has polarity,
connect the shorter leg to ground. Current will flow from 5V, variable resistor (0k! to 10k!), 100!, LED, and
to ground. Changing the value of the variable resistor
will alter the voltage applied and current flow into the
LED. We will measure the current and the voltage with
Arduino’s analog input. Use a new wire to connect the
point between 100! resistor and LED to A0. This is the
voltage applied to the LED. Use another wire to connect
the point between the 10k! variable resistor and the
100! resistor to A1. Subtracting A0 voltage from A1
voltage to get the voltage applied onto the 100!
resistor. Using Ohm’s Law (I=V/R) we find the current
flowing on the circuit, i.e. the current flowing in the
LED. To observe that the 5V power supply is stable,
connect a wire from the point between 5V and 10k!
variable resistor to A2. Check the circuit once again to
make sure everything is in place. Then connect the
Arduino to PC’s USB port. When connected, the LED
will light up, and when you turn the knob of the
variable resistor to the right, the LED will light
dimmer. Now we are ready for the experiment.

6.2 Measuring LED Voltage and Current

Using the three analog input channels of the
Arduino, we will measure the LED voltage-current
properties with LINX. Open LINX – Analog Read N
Channels.vi from NI Example Finder (Figure 6-2).
Click the ”▽” icon on the right side of the Serial Port

control and select the COM number that the Arduino is
connected to. If nothing is shown even though your

�100

Figure 6-1 Circuit diagram of experimental circuit

Figure 6-2 NI Example Finder

Arduino is connected to the USB port, click the “Refresh” on the bottom of the pull-down menu. We will input
the analog input numbers into the AI Channel(s) array. Since we are using A0 to A2, we input 0, 1, and 2.
Press the Run button and turn the variable resistor knob left and right and you will see the Waveform Chart
“Analog Data” result change (Figure 6-3). A0 should be around 2V, A1 should be between 2V to 5V
depending on the position of the variable resistor, and A2 should be 5V. You may have noticed that there is

�101

Figure 6-4 Elements of
Channels array

Figure 6-5 Block diagram

Figure 6-3 LINX – Analog Read N Channels.vi

data around 0V as well. Hover the cursor over the Plot Legend
and drag down the little blue square and you will see “Plot 3”
below “A2.” Do the same for “AI Channel(s)” array as in Figure
6-4 and you will see there are only 3 items in the array and only 3
channels are set. From the top of LabVIEW, select “Window >
Show Block Diagram” (Figure 6-5) to open the block diagram.
Right-click on the block diagram to open the Functions Palette
and hover to Array Palette. Left-click on “Array Size” and place it
near Analog Read.vi and connect it to determine the number of
items in the array (Figure 6-6). Run the VI and observe the
“size(s)” indicator, and you see that it is 3 as expected. Double
click on “Array To Cluster” in between Analog Read.vi and
waveform chart, and you will see a small window “Cluster Size”
displayed (Figure 6-7). Input “3” and click the OK button. Now
run the VI again to see that the fourth plot has disappeared. Study
the help file on waveform chart to notice that we need to connect
the data as cluster when we connect multiple plots onto the same
waveform chart.

Save LINX – Analog Read N
Channels.vi as LED VI Curve.vi. We
want to delete the text on the front
panel but cannot since it is locked.
Move the mouse cursor to the top left of
the explanation text and drag the
mouse over the rectangle to select the
textbox. Click on the “Reorder” icon on
the toolbar and select “Unlock” to
delete the textbox (Figure 6-8). Using
“Index Array” function in the Array
function palette, extract item 0, 1, and 2 from Analog Ready.vi. Item 0 is the voltage applied to the LED. Value
of Item 0 subtracted from Item 1 is the voltage applied to 100! resistor, and divide this voltage by 100! to get
the current flowing in this circuit (Figure 6-9). We are able to calculate the voltage and current applied to LED

�102

Figure 6-6 Size of the output array

Figure 6-8 Unlock the description text

Figure 6-7 Number of elements in cluster

this way. Connect numeric indicators to the LED voltage and current to observe that when the voltage
becomes higher and current becomes greater, the LED luminance is greater, and when the voltage becomes
lower and current is less, the luminance is lower (Figure 6-10).

�103

Figure 6-9 Block diagram to display voltage and current

Figure 6-10 Front panel displaying voltage and current

6.3 The Program to Display LED V-I Property Curve

Let us plot the properties in the X-Y Graph with voltage in X axis and current in Y axis. You may already
have the knowledge to write this VI on your own, but we have provided an example VI. Open 6-2_LED VI
Curve.vi in the program folder. When the ”Add data” button is pressed, voltage and current measured are
added to voltage array and current array and are plotted onto the X-Y Graph. Set the “Serial Port” and AI
Channel(s) and press the Run button. Change the voltage and current with variable resistor and press the
”Add data” button accordingly. As data is accumulated you will see a graph increasing to the top right
(Figure 6-11). Make sure to fill the gap by adding data while controlling the variable resistor. The regression
analysis button will be explained in section 6.4. This example VI does not have the function to save the data,
so data will become unusable after VI is stopped. Therefore, do not stop the VI just yet. Open the block
diagram and observe if the structure is as you have expected (Figure 6-12). Take a closer look at the case
structure that works when the ”Add data” button is clicked. Here we are sorting the voltage from low to high.
This is included because voltage and current must be paired to correctly analyze the data. For both voltage
and current, we add the data into their respective array and then create another array with item as clusters

�10 4

Figure 6-11 Adding data to X-Y graph

with a single pair of voltage and current. Using “Sort 1D Array” we sort this array of clusters. Since this
function sorts the array based on the 0th item of the cluster, notice that voltage is set as the 0th item. After they
are sorted, the cluster is separated again and are put back into voltage and current arrays. You can also use
“Sort 2D Array” function if available. To display the data onto the X-Y Graph, we assemble the 1D array data
for X-axis and 1D array for Y-axis as a cluster. To display multiple plots onto the X-Y Graph, we create an
array of this cluster.

6.4 Regression Analysis of LED V-I Property Data

By modifying the voltage while adding the data, we can observe that current increases when the voltage is
increased with slight disparity. LED is short for Light Emitting Diode, and it is a type of a diode. From here
on we will explain how to display the LED voltage and current data as approximation equation. As we
acquired the data repeatedly while changing the resistance, you may have noticed that voltage and current
pair has shifted position for similar resistance. You may have expected the data to align in the same position
as data points increase, but sorry to disappoint you. There are many potential reasons for this misalignment.
You may think that voltage and current are read exactly at the same time, but in reality they are read one by
one, so there is a time difference. Turning the knob of the variable resistor too quickly would also cause the

�105

Figure 6-12 Block diagram

voltage and current data difference. Temperature difference of the
LED could be another reason. As you can see, the difference is
yielded by improperly controlled factors. First line of Figure 6-13 is
the model equation for voltage-current property of the diode PN
Junction. Looks complicated; it is exponential function you learn in
high school. Simply put, it shows that changing voltage V grows
current exponentially. Variables are explained in Figure 6-14.
Elementary charge and Napier’s constant are both “e,” but to
differentiate, elementary charge is written in italics. A model function
simplifies natural behavior and display the effect as a mathematical
function.

When the current flow into an LED becomes greater we cannot
ignore the voltage drop caused by internal resistance (r). The first
equation on Figure 6-15 represents this and (‒ I * r) is the voltage
drop by inner resistance. If you look at this equation closely, current
(I) is used both on the left and right hand side of the equation, so we
cannot solve for current just by substituting in voltage (V). The third
equation in Figure 6-15 solved for voltage. You may feel uneasy
about how voltage is expressed as a function of current, but for
convenience we will continue the analysis by placing current for x-
axis and voltage for y-axis.

The procedure of comparing between the experiment data with
rounds of error and a model equation to acquire probable parameters
and substituting them in the model equation to express the
experiment data is called regression analysis. For this experiment,
we can say that we are deriving the diode ideality factor (n),
reverse saturation current (I0), and internal resistance (r) from the
data you acquired by pressing the “Add data” button multiple times.
Once n, I0, and r are determined, we are able to estimate the
relationship between current and voltage for an LED.

Press the “regression analysis” button to display the regression
curve on the X-Y graph (Figure 6-16). Bold line is the regression

�106

Figure 6-15 Model equation with
inner resistance in consideration

Figure 6-14 Constants

Figure 6-13 Model equation without
inner resistance in consideration

curve acquired from various data points. Let us open the sub VI that performs the regression analysis. Open
the block diagram of 6-2_LED VI Curve.vi and double click 6_sub model fitting vi located in the true case of
case structure connected to “regression analysis” button. Front Panel similar to Figure 6-17 should be
displayed, but there should be no values in controls and indicators. You may have various front panels and
block diagrams open on your display, Open the front panel of 6-2_LED VI Curve.vi and press “regression
analysis” button once again. Now values will be inputted onto controls and data will be displayed on the
three graphs. The rightmost graph is the final result of the regression, and this will be displayed on the front
panel of 6-2_LED VI Curve.vi. Open the block diagram of 6_sub model fitting.vi and it should be displayed
like Figure 6-18. Figure 6-19 is the equation extracted from third row of Figure 6-15. The ln() in the equation
is natural logarithm. The right hand side of the equation is a combination of the linear function of ln(I) and
the linear function of I.

The leftmost graph on Figure 6-17 displays the natural logarithm of measured current data on the x-axis
and voltage on the y-axis. Look at the legend and you will see that there are four types of data: Small Current

�107

Figure 6-16 Displaying the regression curve

�108

Figure 6-17 Sub VI for regression analysis

Figure 6-19 Model equation with inner
resistance in consideration

Figure 6-18 Block diagram

Region, Large Current Region, Small Current Region Regression Line, and Regression Residual. This
corresponds to the block diagram where four data wires are connected to the graph on the top. The method to
separate the “Small Current Region” and “Large Current Region” will be explained later. Small Current
Region increases linearly while Large Current Region curves up gradually. Look at the equation on Figure
6-19 and remember that the right hand side is the combination of linear function of ln(I) and linear function of
I. The reason why Small Current Region changes linearly is because the linear function of ln(I) is prominently
visible. “Small Current Region Regression Line” is the linear regression of Small Current Region displayed
with red solid line. Subtracting “Small Current Region Regression Line” from the experiment voltage data and
graphing the result, we get “Regression Residual,” which is the linear function of I. The reason why
“Regression Residual” is curved despite it being linear function is because the x-axis is the natural logarithm
of current. The graph on the center shows current as x-axis and voltage as y-axis, and as shown on the
legend, it displays the inner resistance element and its linear regression. Inner resistance element is the
Regression Residual on the leftmost graph. The rightmost graph shows voltage as x-axis and current as y-
axis and displays the measured data with the summation of two regression data plotted as a regression curve.

Linear Fit.vi function is used for regression analysis. This function allows you to set analysis parameters,
so study the description in the help document. The split between “Small Current Region” and “Large Current
Region” is done at the point where the graph’s “Regression Residual” becomes greater. We have tested three
types of LED and made the split at point “(the minimum of the natural log of current data) + 2” and were able
to conduct regression without a problem, so we believe that readers should get similar results. The optimal
point differs by the properties of an LED, so feel free to modify the point. The regression analysis done in this
chapter is an experiment done at the university level, so some points may have been difficult to understand
due to lack of explanation. The block diagram should be easy to ready, so feel free to investigate further.

�109

6.Appendix Additional Note on Variable Resistorsand the Experimental Circuit

6.Appendix.1 About Variable Resistors (VR)

Variable resistors are also called potentiometers, and there are several types, but as long as they are 10k!,
they do not have to be the same shape as the picture in the main text. Small screwdrivers can be used to turn
the knob of VRs in Picture 6-A1. Red ①, ② and ③ in Picture 6-A2 are pin numbers. If they are not engraved,

the pin assignments can be inferred from the positions of the three leads.

The structure inside is almost identical, and when disassembled it looks like Picture 6-A3 (disassembled
VR with light blue casing). The flat and square one has a reduction gear and is capable of precise adjustment
of 25 revolutions one way.

�110

Picture 6-A1: Various types of VRs

Picture 6-A3: Inside a variable resistor Picture 6-A4: How to insert into a breadboard

The black band across the No. 1 and No. 3 pins is the resistive element. The resistance of 10k! is the value
between ① and ③.When you turn the knob, the gold spring rotates while making contact with pin 2 and the

resistive element. Depending on the angle, the contact position to the resistive element changes, and the
resistance value between 1-2 and 2-3 changes continuously.

6.Appendix.2 Knob Rotating Direction and Value of Resistance

In general, when the knob is turned all the way to the right, the maximum value between 1-2 (in this case,
10k!) and the value between 2-3 is 0!. We can use this as a three-terminal voltage divider or a two-terminal
resistor. The experiments in Chapter 6 use two terminals (between 1-2 or 1-3) because they are used as series
current limiting resistors.

Depending on whether you use 1-2 or 1-3, the direction of turning the knob and the direction that
brightens the LED will change. For Picture 6-A4, the left VR dims LED when turned right, and the right one
brightens LED when turned right. If it was not what you expected, shift the terminals and try again. The
direction will not affect the measurement even if it is reversed.

6.Appendix.3 Notation of Resistance Value

When reading the resistance values written on the parts, it is necessary to pay attention to the mix of
notations. Picture 6-A5 shows 10k! and 300! from the left. These are written as 10K or 300 ohms, so it is easy
to understand, but how many ohms do you think the right end is? The hint is 104.

The law is "two-digit value + one-digit exponent (power of 10)". In this case, 10×104 (four zeros followed
by 10) makes 100000 = 100k!. For example, 472 is 4700 = 4.7k!. If there is no unit and the first digit is not 0,
you can assume it follows this law. If it is simply written as 100, there is a possibility of 10! or 100!, so please
measure it with a tester and confirm it.

�111

Picture 6-A5: Notation of resistance value

6.Appendix.4 LED Polarity

The longer leg of the lead wire is the positive side of the LED. If you cut and align them when you put
them on the breadboard, you will no longer know its sides, but try both sides. If the polarity is reversed, the
current will not flow and the LED will not glow, so don't worry.

6.Appendix.5 Schematic of the Measurement System

You can understand further if you are able to read the schematic.
In this experiment, since variable resistor, resistor and LED are used as individual parts (called discrete

device), it is easy to compare between the real circuit and the diagram (Figure 6-A1). It is difficult to view the

�112

Fig. 6-A1 Experimental circuit diagram

inside of sophisticated devices such as IC, but an analogous circuit diagram can be used to illustrate its
behavior.

The current flows from the 5V power supply terminal through the variable resistor - fixed resistor - LED to
the GND (ground, overall reference) terminal. A0, A1, and A2 are terminals for voltage measurement. In
reality, the current flows into A0 and A1, but the value is very small, so we ignore it.

What is important here is that all the analog inputs of the Arduino are measuring the potential difference
from the GND reference. Therefore, the voltage at both ends of the 100! fixed resistance required to detect the
LED current is obtained by subtracting the A1 and A0 potentials.

�113

Article 6  
Data Analysis with LabVIEW NXG

We are able to understand many things by analyzing the acquired data. Nowadays we can
play our favorite music just by telling the smart speaker to play music. This is because it
acquires our voice as data and performs analysis on it. There are also smartphone apps that
displays jogging distance and the calories spent when we run with it, and this is done by

analyzing the vibration put on the smartphone. “Data analysis” is crucial to understand our
surroundings. LabVIEW NXG contains many functions for analysis, so you can assume it is able to perform
most types of analysis. You have seen from the previous example VIs that some level of programming must be
done before the analysis, but LabVIEW NXG enables us to perform analysis during programming. This allows
us to check if the functions we are using are correct and to acquire the result while programming, enhancing
convenience.

�114

Figure C6-1 LabVIEW NXG Analysis panel

Chapter 7
Using the Latest
Semiconductor
Sensors
This chapter introduces how to use the Arduino as a sensor interface for LabVIEW when using the latest
semiconductor sensors used in smartphones and automobiles for your hobby and daily life.

[Keywords] Semiconductor sensor, heart rate sensor, MAX30102, I2C, SDA, SCL, data sheet, register,  
serial port, queue, producer consumer design pattern  
[Parts used] Arduino UNO x1, breadboard x1, MAX30102 module x1 (Header pin soldering required),  
wires x4

7.1 Semiconductor Sensors Used in Smartphones and Automobiles

Many semiconductor sensors and actuators are used in smartphones. The principle itself has been used for
a long time, but by combining semiconductor microfabrication technology and peripheral circuits, it has
become a compact, high-precision, lightweight sensor / actuator. When you turn your smartphone vertically,
it turns to a vertical screen, and when you turn it horizontally, it turns to a horizontal screen. The function to
launch the app by shaking the smartphone uses a 3-axis accelerometer or 3-axis gyro sensor. Semiconductor
microfabrication technology is also used to produce tiny microphones that are difficult to imagine from
looking at the size of a karaoke microphone.

�115

 Semiconductor microfabrication technology is also used in RF
switches used in high-frequency communication circuits. Many
types of sensors such as 3-axis accelerometer, 3-axis gyro sensor,
pressure sensor, flow sensor, environment (atmospheric pressure /
temperature / humidity) sensor, air quality sensor, and object
detection radar are also used in automobiles.

Small, high-performance semiconductor sensors are difficult to
solder and difficult to use unlike traditional electrical components,
but they can be purchased as a module with peripheral circuits.
Many webpages and blogs describe how to use the accelerometer
and environment (atmospheric pressure, temperature, humidity)
sensors with Arduino, so they are easy to use.

7.2 Sensor to Measure Heart Rate

The MAX30102, which measures heart rate, is located in the
center of the module in Picture 7-1. A high-performance
semiconductor sensor that integrates an LED, LED driver,
photodetector, AD conversion, filtering, and communication
interface. Touch this device with your fingertips to measure your
heart rate. The percentage of oxygen bound to hemoglobin (oxygen
saturation) changes with the heartbeat of the blood flowing through
the skin. The optical reflectance of a particular wavelength of light
changes depending on the oxygen saturation. Using this
phenomenon, MAX30102 emits light from the built-in LED and
receive the reflection from skin with a photo detector to measure the
heartbeat. This sensor can also measure oxygen saturation (SpO2), so
try it later.

Several MAX30102 modules are available and range in price from $ 2 to $ 30. If purchased with reference to
Picture 7-1, it can be used with the pinout diagrams in this manual.

A heart rate sensor (Picture 7-2) that can measure with Arduino's analog input is also widely used, but the
MAX30102 is more convenient because it can measure more stably.

You will need to use a soldering iron to solder the included pin headers. If you really don't want to solder,
you can temporarily test with through-hole test wires.

�116

Picture 7-2 Heart beat sensor
(Analog Output type)

Picture 7-1 MAX30102 Module

7.3 Operate with Sample Program for Arduino

Let’s use the Arduino library and sample programs to make sure your MAX30102 board is not defective
and your wiring is correct.

Now install the library for the MAX30102. In the Arduino IDE, select "Sketch> Include Library> Manage
Library ..." and the Library Manager window (Figure 7-1) will appear. Enter max3010x in the field labeled
"Filter your search ..." and the SparkFun MAX3010x pulse and proximity sensor library will be displayed, as
shown in Figure 7-2. It may take some time depending on internet condition. Click Install.

This library is compatible with the MAX30100, MAX30101, MAX30102, and MAX30105. When the library
installation is complete, close Library Manager.

�117

Figure 7-2 Library for the MAX30102

Figure 7-1 Library Manager

Select "File> Examples> SparkFun MAX3010x Pulse and> Example4_HeartBeat_Plotter" in Arduino
IDE.

Example4_HeartBeat_Plotter.ino program opens (Figure 7-3). This sample sketch is a program that
outputs heart rate data to the serial port and displays it on Serial Plotter of Arduino IDE.  
Upload Example4_HeartBeat_Plotter.ino to Arduino.

Remove Arduino from the USB port. Connect MAX30102 to the Arduino UNO (Table 7-1). A pin name is
printed on the back of MAX30102 module. Refer to Figure 7-4 for the correct wiring.

Connect your Arduino to the USB port and select Serial plotter from the Tools menu. When you place
your finger on the sensor, you will see a heartbeat pulse on top of large DC component. This confirms that the
MAX30102 board is not defective and your wiring is correct.

�118

Figure 7-4 Wiring for MAX30102

Table 7-1 MAX30102 Pins and
Arduino UNO Pins

Figure 7-3 Sample Sketch

7.4 Get the Datasheet

It's a very small sensor, but it's highly functional, so get a data sheet. Search for MAX30102 datasheet to
find MAX30102.pdf. You can learn how to use the MAX30102 by reading this datasheet.

A schematic of the circuit called the Typical Application Circuit (Figure 7-5) is available on the datasheet.
From this figure, you can see that the data register can be read and written by an external processor via I2C
communication. There is a red LED and an infrared LED on the left end, and there is an ADC that converts the
analog value measured by the photodetector into digital data.

Just by looking at this figure, you can see that this small sensor has complicated functions built in. If you
read this datasheet in more detail and create a program that uses the functions of I2C communication of LINX,
you can obtain oxygen saturation (SpO2) and heart rate data without using a library. You can also deepen
your understanding of the datasheet by examining the Arduino library. The library is located at "Documents>
Arduino> Libraries> SparkFun MAX3010x Pulse and Proximity Sensor Library". If you can't find it,
search for MAX30105 on your PC.

�119

Figure 7-5 Typical Application Circuit 
(Cited from MAX30102.pdf)

I think you could run Example4_HeartBeat_Plotter.ino. Continue to
familiarize yourself with the MAX30102 by changing settings such as the
sampling rate or by running other sample programs.

Looking at the datasheet (Table 7-2), we have set
my_HeartBeat10ms.ino(Figure 7-6) with a high sampling rate and a
wide measurement range (Table 7-3). I removed the unnecessary part of
the code and used a function called micros () that returns the elapsed time
in microseconds to get the code working at 10 millisecond intervals.

Open my_HeartBeat10ms.ino from the program folder and upload it

�120

Figure 7-6 my_HeartBeat10ms.ino

Table 7-2 MAX30102 Settings 
(Cited from MAX30102.pdf)

to Arduino. After uploading, open the
serial monitor and try receiving at
115200bps. If 6 digits are displayed one
after another, we can confirm that
MAX30102 sensor is connected correctly.
Close Arduino IDE.

7.5 Creating a LabVIEW Serial Receive Program

There are many example programs in LabVIEW, including those with features similar to the Arduino IDE
serial monitor. Select Directory Structure in the NI Example Finder. The VI we are going to use is
Continuous Serial Write and Read.vi under "Instrument IO> Serial" (Figure 7-7). Double click to open it
and save it to the folder where you are creating the program.

�121

Table 7-3 Settings of my_HeartBeat10ms.ino

Figure 7-7 NI Example Finder

Change VISA resource name to the COM port number
that your Arduino is using and baud rate to "115200" and
press the Run button. When you press the Read button, the
text will appear like a serial monitor (Figure 7-8). The
block diagram looks complicated because this example VI
has many features (Figure 7-9). Delete unused functions
and save as Continuous Serial Read.vi (Figure 7-10). You
can convert the 6-digit string that this VI receives to a
number that you can add, subtract, multiply, divide, or
display in a graph.

Arduino sends at most a 6-digit number and a line feed
code (CR and LF), which is worth two characters, every 10

�122

Figure 7-10 Continuous Serial Read.vi

Figure 7-9 Block Diagram of Continuous Serial Write and Read.vi

Figure 7-8 Continuous Serial Write and Read.vi

milliseconds, so let’s estimate the time required for serial communication. The calculation shown in Table 7-4
shows that about 0.7 milliseconds is required. Here, the communication speed of serial communication is
115200bps, but in the case of 9600bps, which is often used, the communication speed is low and the margin is
almost gone. If you process and save the data while receiving it, you may lose the data. In such situations, use
the Producer / Consumer design pattern, a mechanism that separates data reception and data processing to
allow each process to work independently.

This heart rate measurement program with
the MAX30102 has some headroom, but let's use
the producer / consumer design pattern. Select
"File> New ..." from the menu. The New window
will open. Select "From Template> Framework>
Design Patterns> Producer / Consumer
design pattern (data) .vi" and click the OK
button. The block diagram (Figure 7-11) has two
While Loops that queue the string received in the
upper loop into the lower loop. A queue is like a
line of customers in front of a popular store. Even
if the Consumer Loop below is occasionally
stuck, the line will just become a little longer but
can be processed without omission.

This design pattern only provides some buffer
to handle the unstableness of the processing
time, so if processing time continues to be too
slow, the buffer will eventually overflow, but it
can handle temporary glitches cause by, for
instance, UI processes like writing to a graph.

Save it as max30102ChartDisplay.vi in the
folder where you are creating the program. Copy
VISA Configure Serial Port, VISA Read and
VISA Close from Continuous Serial Read.vi
together with the controls and indicators
connected to them and paste them in the loop
above.

It should look like Figure 7-12. The VI can

�123

Table 7-4 Estimated Time Required for Serial
Communication

Figure 7-11 Producer/Consumer Design Pattern
(Data).vi

run as is, but make the following three changes to pass the incoming string to the lower loop through the
queue:

1. Move the part that receives the character string output from VISA Read function to No Error subdiagram
of the case structure in the Consumer Loop. Wire it to the string output from Dequeue Element.

2. The Return count output of the VISA Read function outputs the number of characters read, so the Queue
Element should be executed only if the number of characters read is greater than zero. To do so, connect
Return count to the input of Greater Than 0? function and the output of Greater Than 0? function to the
case selector.  
Connect read buffer output of VISA Read function to Queue Element.

3. Change the constant connected to Wait (ms) function to "5".

�12 4

Figure 7-12 Copying VISA Functions from Continuous Serial Read.vi

It should look like Figure 7-13. Run the VI. Now the VI is running in Producer / Consumer design
pattern. Up to this point, what is sent as a numeric character string is displayed as is.

 Drag and drop Waveform Chart from Graph palette to the front panel. Use Decimal String To Number
function in Strings palette to convert a numeric string to a number, as shown in Figure 7-14. Wire as shown
in Figure 7-15. When executed, the blood flow pulse is displayed as shown in Figure 7-16.

This program will slow down after running for a while. The reason for slowing down is that there are too
many characters in Response string indicator. Since the data is displayed on the waveform chart, Response
is no longer needed, so delete it (Figure 7-17).

�125

Figure 7-13 Pass Incoming String in Queue

The producer / consumer design pattern uses two While Loops, so the stopping mechanism when the
STOP button is pressed is tricky. Check the operation after Execution Highlights is set to ON and the STOP
button is pressed.

�126

Figure 7-15 Convert String into Number and Display it in Waveform Graph

Figure 7-14 Decimal String To Number

�127

Figure 7-17 Delete Response Indicator

Figure 7-16 Execute max30102ChartDisplay.vi

7.6 Create Heart Rate Measurement Program

Modify max30102ChartDisplay.vi to create a VI that calculates the heart rate, which is the number of
heartbeats per minute. Save max30102ChartDisplay.vi with the name MAX30102_Plot.vi. This VI uses a
signal processing function to estimate heart rate from 10 seconds of data.

The sampling interval of the data is important for performing frequency analysis. Since the data is sent
from Arduino every 10ms, the sampling interval dt is 0.01s. The number of data in 10 seconds is 1000, so
prepare an array of 1000 elements. Figure 7-18 shows an array of 1000 elements created and connected to a
shift register. Not shown, but you should also wire the Error subdiagram. New data will be received every
10msec, so the new data will always be updated at the end of the array. Rotate 1D Array.vi is a function that
moves elements in sequence, thinking that the arrays are connected at the beginning and end like a ring.

�128

Figure 7-18 Create Array and Shift Register

 In Rotate 1D Array.vi, the number of movements n can be specified. Entering "1" moves the last element
at index 999 to index 0 and the element at index 0 to index 1. This function icon is a good example of how a
function can be imagined just by looking at the icon.

Entering "-1" moves index 0 to index 999 (last). The element at index 999 is moved to index 998. The
element with index 1 moves to index 0. When you rotate the array element by "-1" like this, the index 999
becomes the oldest data, so replace it with the new data that came in. Now you can update the new data so
that it is always at the end of the array.

The usage of such an array is called a ring buffer (Figure 7-19).

�129

Figure 7-19 Create Ring Buffer

In Figure 7-20, the waveform data is created from the sampling interval and the data array and connected
to the waveform graph.

When you run the VI, it should look like Figure 7-21.

�130

Figure 7-21 Display of Heartbeat Data on Waveform Graph

Figure 7-20 Create Waveform Data and Connect to Waveform Graph

When you input the waveform data into Extract Single Tone Information.vi, frequency analysis is
performed and the most prominent frequency is output. Multiply by 60 to get your 1-minute heart rate
(Figure 7-22).

Figure 7-23 shows the display screen.

�131

Figure 7-22 Frequency Analysis with Extract Single Tone Information.vi

�132

Figure 7-23 Heart Rate Indicator

Article 7 What LabVIEW NXG Aims for

Technology changes very fast, and the latest technology up to yesterday may be outdated today.
Technology is becoming more complex, and at the same time, new products and technologies
need to be introduced more quickly. LabVIEW NXG is designed to help you quickly achieve
the measurement and control you need for product development. As we already explained in
the previous column, NXG allows you to do Data Acquisition or Analysis before

programming.
Although LabVIEW NXG is still under development, it is expected to have all the features that

LabVIEW has, plus many features that LabVIEW does not have. Familiarize yourself with LabVIEW now. In
the future, when LabVIEW NXG goes beyond LabVIEW, consider switching to LabVIEW NXG.

�133

Figure C 7-1 LabVIEW NXG

�13 4

List of Example VIs
Chapter Program Name Description

3 3-1 LED Simulator.vi This program calculates the LED current for the supply voltage
and the current limiting resistor with the specified LED
characteristics (forward voltage and maximum current).

3 3-2 my_LED_step1.vi This program calculates the LED current from the supply voltage,
forward voltage and current limiting resistor.

3 3-3 my_LED_step2.vi This program was set up so that you cannot enter negative
numbers into the "forward voltage" control.

3 3-4 my_LED_step3.vi In this program, if the LED current is higher than the "maximum
current", the "LED is damaged?" Indicator lights up.

3 3-5 my_LED_step4.vi This program uses a While Loop, so it runs continuously.

4 4-1 SoundVIEW.vi This program records the audio signal from a microphone and a
PC sound source, analyzes the frequency during playback and
displays a spectrogram.

4 4-2 AvailableDevice.vi This program displays the sound source recognized by LabVIEW.

4 4-3 Finite Sound Input.vi This is a sample program provided by NI for capturing audio
signals. It will be changed and used in Chapter 4.

4 4-4 parrot.vi It is a program that takes in an audio signal, waits a short time
and plays it back.

4 4-5 reverse.vi This program plays the recorded signal in reverse.

4 4-6 ForLoopSum.vi This program calculates the sum of 1 to N.

4 4-7 PrimeNumber.vi This program finds all prime numbers less than the specified
positive integer.

4 4-8 2D_array_Display.vi This program introduces various display methods for 2D arrays.

4 4-9 PiPoPa.vi It is a program that generates the tone dial used when making a
call.

�135

4 4-10 easyRecorder.vi It is a program that can record and play back using the state
machine design pattern.

5 5-1_PushCounter.vi It is a counter program that uses Arduino and LINX, and it
increases by 1 when the switch is pressed, and returns to 0 when
it exceeds 10.

5 5-2_FanControl.vi This program controls the fan speed with a switch counter.

5 5-3_FanControlWith 
LongPushStop.vi

It is a program that stops the fan by holding down the switch.

5 5-4_FanControlWith
LongPushImmediate Stop.vi

This program will stop the fan as soon as you hold down the
switch. need improvement.

5 5-5_ Push Counter
(LatchWhenReleased).vi

This is a counter program created using another algorithm that
works the same as 5-2.

5 5-6_Fan Control with Long
Push Stop
(LatchWhenReleased).vi

This is a VI that behaves like 5-4 created with another algorithm.
If you keep pressing the switch, the fan will stop immediately.

6 6-1_LINX - Analog Read N
Channels.vi

This is a sample VI provided by MakerHub as a programming
example for analog input in LINX. Change and use in Chapter 6.

6 6-2_LED VI Curve.vi This is a program that performs an experiment to measure the
voltage-current characteristics of an LED with a simple circuit and
perform regression analysis on the obtained data.

7 7-1_Continuous Serial Write
and Read.vi

This is a program provided by NI as an example of a serial
communication program. Modified and used in Chapter 7.

7 7-2_Continuous Serial
Read.vi

This is a serial communication reception program modified based
on the example of serial communication program.

7 7-3_max30102Chart.vi This program uses the producer / consumer design pattern to
receive and display the heartbeat signal from the Arduino.

7 7-4_max30102HR.vi This program uses a producer / consumer design pattern to
receive a heart rate signal from the Arduino and display the heart
rate.

7 Example4_HeartBeat_
Plotter

This program comes with a library provided by SparkFun for
using the MAX30102 heart rate sensor with Arduino.

Chapter Program Name Description

�136

7 my_HeartBeat10ms This Arduino program uses serial communication to send
heartbeat data at 10 millisecond intervals.

Chapter Program Name Description

�137

�138

Afterword
LabVIEW does not rank in the so-called "programming language ranking." This is because the subject of

the survey are programmers. LabVIEW was invented for non-programmers such as scientists and engineers.
It is very useful when they want to make programs and devices that automate their tasks to improve the work
efficiency. Can you imagine how much fun it would be if you could borrow a little bit of help from the
computer to make your hobby more convenient? But can you also imagine how difficult and daunting it
would be to learn a language for programmers just for this little bit? LabVIEW can help you here. "Automatic
devices" are needed in various industries, and there are many people who design, program, and maintain
them. LabVIEW is the most popular tool among such professionals.

The Japan LabVIEW Users Group is comprised of professionals who love LabVIEW, and members use
LabVIEW every day to "enjoy" their work and hobbies. Furthermore, we wish that more people could get a
hand on this incredible tool. However, it is truly regrettable that LabVIEW is not so widespread, perhaps
because it is for the professionals and the price is not cheap.

One day, we obtained the information that "LabVIEW Professional Edition will be available for free." To
this we thought, “This may drastically increase the number of our LabVIEW peers!” As beta testing began and
our expectations grew, we decided to create a "document for users who interact with LabVIEW for the first
time in the Community Edition." Publishing this for free. Targeting the content for junior and senior high
school students for ease of understanding. “Physical computing,” where the computer and the real world are
physically connected, should be the theme to allow the readers to experience the joy of programming the
most. Announcing the publication in May when the official release is scheduled. The project was started with
such plans at the end of January 2020. Volunteers presented outlines, drafted text for each part, and created
example VIs. Another member conducted the experiment by following the text to check the reproducibility.
Another member translated the text from Japanese to English. This book was created through proofreading,
writing additional columns, designing drawings, and setting layouts. We hope you can feel our love for
LabVIEW.

We hope you become fond of LabVIEW. And if you make a new VI that doesn't appear in this document,
or if you wrote an article about a perspective or an idea in your area of expertise, please let us and other users
know. Let's enjoy together.

Hirotake Watashima
Chairman, Japan LabVIEW Users Group

�139

Publication :
Volunteer members of Japan LabVIEW Users Group

Author : Yusuke Tochigi (Introduction, Chapter 1 to Chapter 3)
Author : Koji Ohashi (Chapter 4 to Chapter 7)
Author : Hirotake Watashima (Chapter 6 Appendix, Afterword)
Translator : anonymous (Introduction)
Translator : York Kitajima (Chapter 1 to Chapter 3 , Chapter 6)
Translator : Tamon Minami (Chapter 5)
Translator : Shogo Shinohara (Chapter 5)
Translator : Yusuke Tochigi (Figures)
Translator : Hirotake Watashima (Chapter 6 Appendix, Afterword, Figures)
Translator : Koji Ohashi (Chapter 4, Chapter 7, Figures)

Cover Design / Photo : Koji Ohashi
Planning : Yusuke Tochigi
Facility Management : Yusuke Tochigi
Editor : Koji Ohashi
Proofreader (J) : Hirotake Watashima, Hidetoshi Emura
Proofreader (E) : York Kitajima, Tamon Minami, Yusuke Tochigi

Sample VI : Koji Ohashi
Sample VI (Improvement) : Hirotake Watashima
（See VI Properties > Documentation）

Operation Verification：Hirotake Watashima

Operation Verification：Hidetoshi Emura

Operational Cooperation : Atsushi Kamoshida 
 Account Manager | Frontier Science Region
 National Instruments Japan Corporation

Publication date : April 28th 2020 (Version 0.9.0) 
 June 24th 2020 (Version 1.0.0)
 June 25th 2020 (Version 1.0.1)

�140

